Preterm infants are susceptible to neonatal sepsis, a syndrome of pro-inflammatory activity, organ damage, and altered metabolism following infection. Given the unique metabolic challenges and poor glucose regulatory capacity of preterm infants, their glucose intake during infection may have a high impact on the degree of metabolism dysregulation and organ damage. Using a preterm pig model of neonatal sepsis, we previously showed that a drastic restriction in glucose supply during infection protects against sepsis via suppression of glycolysis-induced inflammation, but results in severe hypoglycemia. Now we explored clinically relevant options for reducing glucose intake to decrease sepsis risk, without causing hypoglycemia and further explore the involvement of the liver in these protective effects. We found that a reduced glucose regime during infection increased survival via reduced pro-inflammatory response, while maintaining normoglycemia. Mechanistically, this intervention enhanced hepatic oxidative phosphorylation and possibly gluconeogenesis, and dampened both circulating and hepatic inflammation. However, switching from a high to a reduced glucose supply after the debut of clinical symptoms did not prevent sepsis, suggesting metabolic conditions at the start of infection are key in driving the outcome. Finally, an early therapy with purified human inter-alpha inhibitor protein, a liver-derived anti-inflammatory protein, partially reversed the effects of low parenteral glucose provision, likely by inhibiting neutrophil functions that mediate pathogen clearance. Our findings suggest a clinically relevant regime of reduced glucose supply for infected preterm infants could prevent or delay the development of sepsis in vulnerable neonates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850001PMC
http://dx.doi.org/10.7554/eLife.97830DOI Listing

Publication Analysis

Top Keywords

reduced glucose
16
glucose supply
16
preterm infants
12
glucose
9
effects reduced
8
supply infected
8
infected preterm
8
neonatal sepsis
8
organ damage
8
glucose intake
8

Similar Publications

Diabetic nephropathy is a severe chronic complication characterized by cytotoxicity, inflammation, and fibrosis, ultimately leading to renal failure. This study systematically investigated the effects of the PARP1 inhibitor PJ-34 on high glucose-induced cytotoxicity, inflammation, and fibrosis in HK-2 cells, as well as its improvement on neuropathic pain response and transforming growth factor β (TGFβ) expression in a type 1 diabetes mellitus diabetic nephropathy mouse model. Through cellular and animal experiments, we observed that PJ-34 significantly enhanced the proliferative capacity of cells damaged by high glucose, reduced apoptosis, and decreased the release of proinflammatory factors TGFα, interleukin-6, and interleukin-1β.

View Article and Find Full Text PDF

Obesity is a global health challenge associated with significant metabolic and cardiovascular risks. Bariatric surgery and GLP-1 receptor agonists (GLP-1RAs) are effective interventions for weight loss and metabolic improvement, yet their comparative effects on systemic metabolism-particularly energy metabolism, bone health, and heart function-remain unclear. In this study, obese male mice underwent vertical sleeve gastrectomy (VSG), 6 weeks of GLP-1RA (semaglutide) treatment, or sham procedure with saline injection as controls.

View Article and Find Full Text PDF

Objective: Diabetes devices, including continuous glucose monitors (CGMs) and insulin pumps, may significantly affect environmental sustainability and long-term resilience.

Research Design And Methods: This observational study enrolled 49 adults with diabetes using CGMs, insulin pumps, or multiple daily injections (MDIs; three or more per day). Participants completed daily surveys detailing the types and amounts of diabetes-related waste discarded.

View Article and Find Full Text PDF

sPLA2-IB and PLA2R Mediate Aberrant Glucose Metabolism in Podocytes via Hyperactivation of the mTOR/HIF-1α Pathway.

Cell Biochem Biophys

March 2025

Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China.

Secretory phospholipase A2 group IB (sPLA2-IB) and M-type phospholipase A2 receptor (PLA2R) are closely related to proteinuria and idiopathic membranous nephropathy (IMN). Podocytes are important components of the glomerular filtration barrier and glucose metabolism, including glycolysis and tricarboxylic acid (TCA) cycle, is crucial for maintaining podocyte physiological function. Aberrant energy metabolism has been reported in proteinuria diseases, including diabetic nephropathy.

View Article and Find Full Text PDF

Purpose: In the current study we evaluated a blend of ingredients containing mulberry leaf extract (to lower postprandial glucose of the evening meal), tryptophan (facilitator of the sleep initiation) to benefit sleep initiation and quality in adults with self-reported difficulties with sleep initiation.

Methods: Forty-three adults aged between 25 and 50 years enrolled in a randomized, crossover, double-blind, controlled trial. Participants received standardized meals with a glycemic load of 55 ± 10% and were assigned to receive treatment comprising a combination of mulberry leaf extract (750 mg), whey protein containing 120 mg tryptophan, zinc (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!