Transverse aortic constriction (TAC) is one of the experimental mouse models that are designed to investigate cardiac hypertrophy and heart failure. Most of the studies with this model are devoted to the stage of developed heart failure. However, several studies of the early stages (hypertrophy after 1 week of TAC) of this disease found significant changes in the β-adrenergic system, electrical activity, and Ca dynamics in mouse ventricular myocytes. To provide a quantitative description of cardiac hypertrophy, we developed a new compartmentalized mathematical model of hypertrophic mouse ventricular myocytes for the early stage after the TAC procedure. The model described the changes in cell geometry, action potentials, [Ca] transients, and β- and β-adrenergic signaling systems. We also showed that the hypertrophic myocytes demonstrated early afterdepolarizations (EADs) upon stimulation with isoproterenol at relatively long stimulation periods. Simulation of the hypertrophic myocyte activities revealed that the synergistic effects of the late Na current, the L-type Ca current, and the T-type Ca current were responsible for the initiation of EADs. The mechanisms of EAD and its suppression were investigated and sensitivity analysis was performed. Simulation results obtained with the hypertrophic cell model were compared to those from the normal ventricular myocytes. The developed mathematical model can be used for the explanation of the existing experimental data, for the development of the models for other hypertrophic phenotypes, and to make experimentally testable predictions of a hypertrophic myocyte's behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-025-01423-3 | DOI Listing |
Circulation
March 2025
Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St. Luc and Université catholique de Louvain, Brussels, Belgium (L.Y.M.M., H.E., D.d.M., R.V., N.F., J.-L.B.).
Background: Cardiac β3-adrenergic receptors (ARs) are upregulated in diseased hearts and mediate antithetic effects to those of β1AR and β2AR. β3AR agonists were recently shown to protect against myocardial remodeling in preclinical studies and to improve systolic function in patients with severe heart failure. However, the underlying mechanisms remain elusive.
View Article and Find Full Text PDFJ Cell Mol Med
March 2025
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.
Cardiac remodelling, a pathological process induced by various cardiovascular diseases, remains a significant challenge in clinical practice. Here, we investigate the potential of Danuglipron (PF-06882961, PF), a novel oral glucagon-like peptide-1 (GLP-1) receptor agonist, in alleviating pressure overload (PO)-induced cardiac hypertrophy and fibrosis. Using both in vivo and in vitro models, we demonstrate that PF treatment (1 mg/kg/day, orally for 8 weeks) significantly attenuates aortic banding-induced cardiac dysfunction and pathological remodelling in mice.
View Article and Find Full Text PDFJ Cell Mol Med
March 2025
Fu Jen Catholic University, School of Medicine, New Taipei City, Taiwan.
Phosphodiesterase inhibitors regulate intracellular Ca of cardiomyocytes through enhancing second messenger signalling. This study aimed to investigate whether TP-10, a selective phosphodiesterase10A inhibitor, modulates Ca cycling, attenuating arrhythmogenesis in the right ventricular outflow tract (RVOT). Right ventricular tissues from New Zealand white rabbits were harvested, and electromechanical analyses of ventricular tissues were conducted.
View Article and Find Full Text PDFNat Commun
March 2025
Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA.
Progesterone receptors are classified into nuclear and membrane-bound receptor families. Previous unbiased proteomic studies indicate a potential association between cardiac diseases and the progesterone receptor membrane-bound component-2 (PGRMC2); however, the role of PGRMC2 in the heart remains unknown. In this study, we use a heart-specific knockout (KO) mouse model (MyH6•Pgrmc2) in which the Pgrmc2 gene was selectively deleted in cardiomyocytes.
View Article and Find Full Text PDFClin Sci (Lond)
March 2025
Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A.
Cardiac remodeling in response to disease or tissue damage severely impairs heart function. Therefore, the description of the molecular mechanisms responsible is essential for the development of effective therapies. Trbp (Tarbp2) is a multifunctional RNA-binding protein that is essential during heart development, but its role in the adult heart and cardiac remodeling remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!