Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomech Model Mechanobiol
Research Unit of Theoretical and Computational Biomechanics, Department of Engineering, Universitá Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy.
Published: February 2025
Laser ablation techniques employ fast hyperthermia mechanisms for diseased-tissue removal, characterized by high selectivity, thus preserving the surrounding healthy tissue. The associated modeling approaches are based on classical Fourier-type laws, though a limited predictivity is observed, particularly at fast time scales. Moreover, limited knowledge is available for cardiac tissue compared to radiofrequency approaches. The present work proposes a comprehensive modeling approach for the computational investigation of the key factors involved in laser-based techniques and assessing the outcomes of induced cellular thermal damage in the cardiac context. The study encompasses a comparative finite element study involving various thermal and cellular damage models incorporating optical-thermal couplings, three-state cellular death dynamics, and a second-order heat transfer formulation generalizing the classical Fourier-based heat equation. A parametric investigation of the thermal profiles shows that higher-order models accurately capture temperature dynamics and lesion formation compared with the classical Fourier-based model. The results highlight the critical role of cardiac anisotropy, influencing the shape and extent of thermal damage, while the three-state cell death model effectively describes the transition from reversible to irreversible damage. These findings demonstrate the reliability of higher-order thermal formulations, laying the basis for future investigations of arrhythmia management via in silico approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10237-025-01926-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.