A biomimetic dual-targeting nanomedicine for pancreatic cancer therapy.

J Mater Chem B

State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Published: March 2025

The physiological characteristics of pancreatic cancer (PC) involve the interplay between tumor cells, cancer-associated fibroblasts (CAF) and the extracellular matrix (ECM). This intricate microenvironment contributes to the cancer's resistance to conventional chemoradiotherapy and its poor prognosis. Carbon monoxide (CO), a promising molecule in gas therapy, can effectively penetrate solid tumors and induce tumor cell apoptosis at high concentrations. However, precise dosing control remains a significant challenge in the administration of exogenous CO, and its inherent toxicity at elevated concentrations presents substantial barriers to clinical translation. In this study, we developed a novel biomimetic nanomedical drug delivery system capable of simultaneously targeting CAF and PC tumor cells, degrading the ECM, and inhibiting tumor growth. The strategy integrates iron carbonyl (FeCO), an anti-cancer agent, and losartan (Lo), a drug that degrades tumor matrix, into a biodegradable nanomaterial-mesoporous polydopamine (MPDA). The resulting nanoparticles are then coated with CAF cell membranes (CAFM) and functionalized with plectin-1 targeted peptide (PTP), a molecule that targets PC cells, to construct the (Lo + FeCO)@MPDA@CAFM-PTP nanomedicine. This system utilizes the homologous adhesion properties of CAF membranes to target CAFs, delivering Lo to degrade the ECM. Following ECM degradation, the nanomedicine penetrates further to bind to PC tumor cells PTP. Then anti-cancer drug FeCO is released to react with the excessive reactive oxygen species (ROS) in PC tumor cells to produce high concentrations of CO, effectively inducing tumor cell apoptosis. The (Lo + FeCO)@MPDA@CAFM-PTP nanomedicine demonstrated significant cytotoxicity against Panc-1 cells and effectively inhibited PC tumor growth . This innovative approach holds great promise for advancing pancreatic cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4tb02206hDOI Listing

Publication Analysis

Top Keywords

tumor cells
16
pancreatic cancer
12
tumor
9
tumor cell
8
cell apoptosis
8
high concentrations
8
tumor growth
8
feco@mpda@cafm-ptp nanomedicine
8
cells
6
biomimetic dual-targeting
4

Similar Publications

Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.

Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.

View Article and Find Full Text PDF

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has been demonstrated to be an effective tool for cancer treatment. Seeking organelle-targeting photosensitizers (PSs) with robust reactive oxygen species (ROS) production is extremely in demand. Herein, we propose an aggregation-induced photosensitization strategy for effective PDT with osmium complexes.

View Article and Find Full Text PDF

T-cell Engagers in Prostate Cancer.

Eur Urol

March 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. Electronic address:

Owing to the "cold" tumor immune microenvironment of prostate cancer, immune-targeting agents have shown limited efficacy in patients with advanced prostate cancer, highlighting the need for new therapies with novel mechanisms of action. In this context, T-cell engagers (TCEs), which induce T-cell-mediated killing of cancer cells by binding the CD3 receptor on T cells and a specific tumor antigen expressed on malignant cells, represent a promising therapeutic option. Multiple studies have explored the use of TCEs in previously treated patients with metastatic castration-resistant prostate cancer, and several ongoing trials are currently assessing novel TCEs either as single agents or in combinatorial regimens with molecules with a distinct mechanism of action (eg, androgen receptor pathway inhibitors and other immune-targeting agents).

View Article and Find Full Text PDF

CARs for lymphoma.

Best Pract Res Clin Haematol

December 2024

Department of Medicine, Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Boston, MA, USA.

Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized treatment options for B-cell Non-Hodgkin Lymphoma (NHL). CD19-targeting CAR-T cell therapy is approved for treatment in Diffuse Large B Cell Lymphoma, Follicular Lymphoma, Mantle Cell Lymphoma, and Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. CAR-T cells demonstrate robust and durable responses even in heavily pretreated patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!