Objective: Despite vaccination and early antibiotic treatment, pneumococcal meningitis remains a disease with significant mortality and morbidity. The resulting inflammatory response can lead to cochlear fibrosis, ossification where cochlear implant surgeries are far challenging. Our study aimed to investigate the preventive effect of controlled-release dexamethasone implant in such cases in terms of structural integrity.

Methods: Twenty-four rats were induced with pneumococcal meningitis and randomized into study (n = 16) and control (n = 8) groups. Controlled-release dexamethasone implants were placed transbullarly into the right round window of the study group. Bilateral cochleas underwent histological examination 3 months post-infection.

Results: In the study, cochlear effects of pneumococcal meningitis were evaluated. The basal turn was significantly more affected by fibrosis and ossification ( = .013 and .010, respectively). Compared with control ears, the dexamethasone implant group showed less fibrosis in all turns and less ossification in the basal turn ( = .014, .003, .044, and .035, respectively).

Conclusion: In pneumococcal meningitis, fibrosis and ossification occur more intensively in the basal turn of the cochlea. Controlled-release dexamethasone implants are effective in preventing cochlear ossification and fibrosis. The prevention from the structural damage indicates the potential role of these dexamethasone implants in post-meningitic hearing loss and easing cochlear implant surgeries.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00034894251322616DOI Listing

Publication Analysis

Top Keywords

controlled-release dexamethasone
16
pneumococcal meningitis
16
fibrosis ossification
12
dexamethasone implants
12
basal turn
12
preventive controlled-release
8
cochlear ossification
8
cochlear implant
8
implant surgeries
8
dexamethasone implant
8

Similar Publications

The aim of this study is to develop and analyze dexamethasone-loaded poly hydroxybutyrate-stearic acid blend nanoparticles for the treatment of non-bacterial uveitis. Uveitis is a chronic inflammatory eye disease responsible for 10-15% of global blindness. While repeated intravitreal steroid injection is a successful treatment strategy, it has drawbacks such as cataracts and retinal detachment.

View Article and Find Full Text PDF

Objective: Despite vaccination and early antibiotic treatment, pneumococcal meningitis remains a disease with significant mortality and morbidity. The resulting inflammatory response can lead to cochlear fibrosis, ossification where cochlear implant surgeries are far challenging. Our study aimed to investigate the preventive effect of controlled-release dexamethasone implant in such cases in terms of structural integrity.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) presents a significant challenge in healthcare, characterized by its chronicity and complex pathogenesis involving genetic, immune, and environmental factors. Current treatment modalities, including anti-inflammatory drugs, immunomodulators, and biologics, often lack sufficient efficacy and are accompanied by adverse effects, necessitating the urgent search for therapeutic approaches targeting mucosal barrier restoration and inflammation modulation. Precision nanomedicine emerges as a promising solution to directly address these challenges.

View Article and Find Full Text PDF

Topical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects.

View Article and Find Full Text PDF

EVA implants for controlled drug delivery to the inner ear.

Int J Pharm X

December 2024

Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.

This study evaluated the potential of poly(ethylene vinyl acetate) (EVA) copolymers as matrix formers in miniaturised implants, allowing to achieve controlled drug delivery into the inner ear. Due to the blood-cochlea barrier, it is impossible to reliably deliver a drug to this tiny and highly sensitive organ in clinical practice. To overcome this bottleneck, different EVA implants were prepared by hot melt extrusion, altering the vinyl acetate content and implant diameter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!