Solar-driven catalytic conversion of carbon dioxide (CO) into value-added C chemicals and fuels has attracted significant attention over the past decades, propelled by urgent environmental and energy demands. However, the catalytic reduction of CO continues to face significant challenges due to inherently slow reduction kinetics. This review traces the historical development and current state of photothermal CO reduction, detailing the mechanisms by which CO is transformed into C products. A key focus is on catalyst design, emphasizing surface defect engineering, bifunctional active site and co-catalyst coupling to enhance the efficiency and selectivity of solar-driven C synthesis. Key reaction pathways to both C and C products are discussed, ranging from CO, CH and methanol (CHOH) synthesis to the production of C products such as C hydrocarbons, ethanol, acetic acid, and various carbonates. Notably, the advanced synthesis of C hydrocarbons exemplifies the remarkable potential of photothermal technologies to effectively upgrade CO-derived products, thereby delivering sustainable liquid fuels. This review provides a comprehensive overview of fundamental mechanisms, recent breakthroughs, and pathway optimizations, culminating in valuable insights for future research and industrial-scale prospect of photothermal CO reduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841621PMC
http://dx.doi.org/10.1039/d5sc00330jDOI Listing

Publication Analysis

Top Keywords

catalytic reduction
8
photothermal reduction
8
reduction
5
products
5
advances developments
4
developments solar-driven
4
photothermal
4
solar-driven photothermal
4
photothermal catalytic
4
reduction multicarbon
4

Similar Publications

Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.

View Article and Find Full Text PDF

This study investigates the synthesis and characterization of Plant-Ag-graphene nanocomposites through a combination of spectroscopic and microscopic techniques, the nanocomposites were formed by catalyzing silver nanoparticles with plant extracts, and the resulting structures were analyzed using advanced instrumentation. In the FTIR analysis, distinctive peaks were observed at 3340 cm⁻1 (O-H stretching), 1740 cm⁻1 (C = O stretching), and 1050 cm⁻1. When compared to silver nanoparticles, the nanocomposites exhibited altered peak intensities, indicating modifications in chemical bonding.

View Article and Find Full Text PDF

Exceptional Resistance to Chlorine-Induced Photocatalytic Poisoning via Vacuum UV Irradiation.

Environ Sci Technol

March 2025

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.

Catalyst deactivation poses a significant challenge in environmental remediation, especially for the photocatalytic oxidation of chlorinated volatile organic compounds (Cl-VOCs). In this study, a functional flower-like TiO@Mn/rGO (FTMG) catalyst coupled with a vacuum ultraviolet (VUV) lamp was used as a novel photocatalytic oxidation (VUV-PCO) system for chlorobenzene (CB) oxidation. In this system, more than 80% of CB was efficiently oxidized at a high w8 hly space velocity of 600,000 g h, which was a 6.

View Article and Find Full Text PDF

The selective synthesis of different products from a substrate employing a single catalyst by altering the reaction conditions is challenging. Herein, easy-to-synthesize and cheap CuO NPs catalyzed chemodivergent transfer hydrogenation (TH) of azoarenes to hydrazoarene and aniline derivatives using ammonia borane (AB) under mild condition is disclosed. The practical applicability of the protocol was demonstrated by gram-scale synthesis of hydrazo and aniline derivatives as well as by the reduction of few commercially used dyes such as methyl red, sudan I, sudan III and solvent yellow 7.

View Article and Find Full Text PDF

The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!