Identifying the mechanism by which lipid metabolism regulates cancer may offer a novel approach for therapeutic intervention. It has previously been identified that a lipid metabolism-related factor, namely fatty acid hydroxylase domain containing 2 (FAXDC2), is downregulated in various types of cancer, and inhibits the proliferation and migration of liver cancer cells through a mechanism associated with ERK. The liver is important for lipid metabolism, and FAXDC2 is involved in the synthesis of cholesterol and sphingomyelin. However, the functional mechanism by which FAXDC2 influences liver cancer cells through metabolic processes and ERK signaling remains unclear. Therefore, the present study induced the overexpression of FAXDC2 in HepG2 liver cancer cells and performed a metabolomics analysis. This identified guanosine diphosphate (GDP) as a significantly altered metabolite. Using AlphaFold3, a robust interaction was predicted between FAXDC2 and GDP, which lead to the hypothesis that GDP may mediate the inhibitory effects of FAXDC2 on liver cancer cells by directly modulating the functional properties of the cells, thereby influencing their behavior and progression. Cell Counting Kit-8 assays were used to study the impact of elevated GDP concentrations on HepG2 cell growth. The results revealed a gradual reduction in the viability of HepG2 cells as the GDP concentration increased. In addition, western blotting showed that GDP treatment was accompanied by a significant downregulation of cyclin dependent kinase 4 and cyclin D1 expression levels, and Transwell experiments revealed that GDP treatment significantly decreased the invasion of HepG2 cells. Treatment with GDP also significantly inhibited the expression of ERK. In summary, the present study is the first to indicate that GDP is a metabolic small molecule with inhibitory activity in cancer cells, which has previously been overlooked in tumor metabolic reprogramming. The study findings offer new insights and strategies for the diagnosis and treatment of liver cancer, and potentially other types of cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843412 | PMC |
http://dx.doi.org/10.3892/ol.2025.14924 | DOI Listing |
J Vet Intern Med
March 2025
Cornell University College of Veterinary Medicine, Ithaca, New York, USA.
Introduction: Some massive or nodular liver tumors can make surgical resection dangerous. Transarterial embolization and chemoembolization recently have been evaluated in dogs and cats, but multinodular or diffuse tumors make selective embolization difficult, impractical, and may require multiple anesthetic events. Hepatic dearterialization in humans has been shown to be safe and sometimes successful in promoting temporary tumor regression.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
CNRS, Institut de Physique de Rennes (IPR), UMR 6251, Université de Rennes, 35000 Rennes, France.
Osteosarcoma is medically defined as a bone-forming tumor with associated bone-degrading activity. There is a lack of knowledge about the network that generates the overproduction of bone. We studied the early stage of osteosarcoma development with mice enduring a periosteum injection of osteosarcoma cells at the proximal third of the tibia.
View Article and Find Full Text PDFAdv Clin Exp Med
March 2025
Emergency And Intensive Care Unit, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: Acute respiratory distress syndrome (ARDS) presents a significant challenge in the management of sepsis, with various comorbidities potentially influencing its development. Understanding the impact of these comorbidities is crucial for improving patient outcomes.
Objectives: This meta-analysis was conducted to investigate the relationship between various comorbidities and the development of ARDS in patients with sepsis, with the aim of improving understanding and management of this condition.
ChemMedChem
March 2025
Idorsia Pharmaceuticals Ltd, DD Biology, SWITZERLAND.
Galectin-3 (Gal-3), a β-galactoside-binding lectin, is implicated in diverse cellular functions ranging from immune response modulation to tissue homeostasis. Notably, increased Gal-3 expression has been linked to the progression of numerous diseases, including cancer, fibrosis, and cardiovascular disorders, underscoring its potential as a therapeutic target. Small molecule inhibitors have been discovered and are valuable tools to study such diseases.
View Article and Find Full Text PDFFront Oncol
February 2025
Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Centromere protein H (CENP-H) is an important component of a functional centromere. Studies have demonstrated that CENP-H is overexpressed in renal cell, gastric, hypopharyngeal squamous cell, nasopharyngeal, endometrial, lung, cervical, esophageal, liver, colorectal, oral squamous cell, breast, and tongue carcinomas. CENP-H overexpression is positively correlated with a poor prognosis, pathological stage, T stage, and lymph node metastasis in patients with the above carcinomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!