One of the most common adverse side effects of chemotherapeutics is chemotherapy-induced peripheral neuropathy (CIPN). Paclitaxel, a highly effective chemotherapeutic, is associated with a high incidence of paclitaxel-induced peripheral neuropathy (PIPN) that persists for over a year in 64% of patients and worsens with cumulative PTX dose. Patients experiencing PIPN may reduce the dosage of chemotherapy or halt treatment due to this pain. Current preclinical models have improved our understanding of PIPN but have been ineffective in generating translational therapeutic options. These models administer a single cycle of PTX to induce a PIPN phenotype of mechanical and cold hypersensitivity that resolves within 28 days. However, this does not mirror the clinical dosing regimen or the patient experience of CIPN. In this study, we conduct a comprehensive and longitudinal behavioral profile of our novel model of PIPN in mice where three consecutive cycles of PTX (4 mg/kg, 4 doses/cycle) are given to mimic the clinical administration. Repeated cycles of PTX caused long-lasting mechanical and cold hypersensitivity in male and female C57Bl/6J mice that mirrors clinical observations of persistent CIPN without causing detrimental effects to rodent overall health, normal rodent behavior, or motor function. Our findings support the use of this translational model to facilitate a better understanding of PIPN and the development of effective treatment options. Improved pain management will enable the completion of cancer treatment, decrease health care expenditure, decrease mortality, and improve the quality of life for cancer patients and survivors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844414PMC
http://dx.doi.org/10.1101/2025.02.10.637458DOI Listing

Publication Analysis

Top Keywords

peripheral neuropathy
12
novel model
8
paclitaxel-induced peripheral
8
understanding pipn
8
mechanical cold
8
cold hypersensitivity
8
cycles ptx
8
pipn
6
model paclitaxel-induced
4
neuropathy produces
4

Similar Publications

Multiple sclerosis (MS) is among the most common autoimmune disorders and is characterized by inflammation and degeneration affecting the central nervous system. Glatiramer acetate (GA) is an immunomodulatory drug utilized for treating relapsing-remitting MS. However, a considerable number of patients do not exhibit an appropriate response to this drug.

View Article and Find Full Text PDF

Peripheral nerve tissue engineering is a field that uses cells, growth factors and biological scaffold material to provide a nutritional and physical support in the repair of nerve injuries. The specific properties of injectable human amniotic membrane-derived hydrogel including growth factors as well as anti-inflammatory and neuroprotective agents make it an ideal tool for nerve tissue repair, and metformin may also aid in nerve regeneration. The aim of this study was to investigate the effects of hydrogel derived from amniotic membrane (AM) along with metformin (MET) administration in the repair of sciatic nerve injury in male rats.

View Article and Find Full Text PDF

Clinical metabolomics in type 2 diabetes mellitus: from pathogenesis to biomarkers.

Front Endocrinol (Lausanne)

March 2025

Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

As a multidimensional metabolic disorder, the disability and death rate of type 2 diabetes mellitus (T2DM) has increased over time. T2DM covers a wide range of pathological manifestations ranging from hyperglycemia to multi-organ failure, and it has the potential to evolve into acute complications, including ketosis and chronic complications such as peripheral neuropathy, retinopathy, and nephropathy. T2DM mainly occurs in microvascular and large vessels and thus it is restricted for the clinician to diagnose and prescribe.

View Article and Find Full Text PDF

Background: The CXC motif chemokine ligand 8 (CXCL8)-CXC motif chemokine receptor 1/2 (CXCR1/2) axis has been implicated in type 1 diabetes mellitus (T1DM). Its actions on non-immune cells may also contribute to T1DM-associated complications, including painful diabetic peripheral neuropathy (DPN) and diabetic retinopathy (DR).

Methods: We assessed the efficacy of early (4-8 weeks) or late (8-12 weeks) daily ladarixin (LDX) for the treatment of streptozotocin (STZ)-induced T1DM and the related complications of DPN or DR in male rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!