A Bright Organic Fluorophore for Accurate Measurement of the Relative Quantum Yield in the NIR-II Window.

Small

Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.

Published: February 2025

Organic dyes with photoluminescence in the second near-infrared window (NIR-II, 1000-1700 nm) are promising for bioimaging and optoelectronic devices. Photoluminescence quantum yield (PLQY) is a direct measure of their performance. Integrating sphere technology is effective in determining the absolute PLQY. However, the low PLQY values of most NIR-II organic fluorophores lead to significant measurement errors. Therefore, the most common method for PLQY determination is a relative approach using a photoluminescence spectrometer and a standard reference like IR-26. Although the relative method enables precise calculation of the PLQY ratio between the sample and the reference, the specific PLQY value of IR-26 is not clearly defined and is reported to range from 0.05% to 0.50%. Such a deviation can cause significant errors in relative PLQY measurements. In this study, it is reported that a bright organic fluorophore called TPE-BBT exhibits a high PLQY of 3.94% in THF, which can be accurately measured using a commercially available integrating sphere. Using TPE-BBT as a standard, the PLQY values of IR-26 in 1,2-dichloroethane and IR-1061 in dichloromethane are accurately determined to be 0.0284% and 0.182%, respectively. It is hoped that using this reliable standard will unify the evaluation criteria for NIR-II organic fluorophores.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202411866DOI Listing

Publication Analysis

Top Keywords

plqy
9
bright organic
8
organic fluorophore
8
quantum yield
8
integrating sphere
8
plqy values
8
nir-ii organic
8
organic fluorophores
8
fluorophore accurate
4
accurate measurement
4

Similar Publications

Metal halide perovskites have excellent optoelectronic properties. This study aims to determine how the optoelectronic properties of a model perovskite, cesium lead bromide (CsPbBr), change with length and thickness in one dimension (1D). By examining the photophysics of CsPbBr quantum dots (QDs), nanowires (NWs), and nanorods (NRs), we observe the influence of confinement, exciton diffusion, and trapping on their optical properties.

View Article and Find Full Text PDF

Cesium-lead halide perovskite nanomaterials have been considered new-generation emitters that can meet the requirements of high photoluminescence efficiency and the high color standard of Rec. 2020. However, their practical application is currently hindered by the challenge of achieving better stability and growth in green solvents.

View Article and Find Full Text PDF

Mn(II)-Doped Perovskites with Carboxylic Acid Dimers Exhibiting Scintillation.

Inorg Chem

March 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.

Layered hybrid metal halide perovskites, characterized by their distinctive quantum well structures and significant exciton binding energies, exhibit exceptional fluorescence properties, rendering them ideal candidates for high light yield scintillators. However, significant challenges remain in synthesizing layered metal halide perovskites with high photoluminescence quantum yields (PLQY), large Stokes shifts, and stable radioluminescence (RL). In this study, a stable Mn(II)-doped layered perovskite was successfully synthesized.

View Article and Find Full Text PDF

High-Temperature-Induced Fused Polycyclic Aromatic Multiple Resonance Emitters Exhibiting Narrowband and Pronounced Red-Shifted Emission.

Small

March 2025

Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Synthetic methodology is a fundamental framework for preparing functional materials, significantly advancing their development. Herein, a novel 6π electrocyclization reaction is unexpectedly discovered that promotes further ring closure in materials derived from multi-resonance thermally activated delayed fluorescence (MR-TADF) compounds, known for their narrow emission. By simply raising the reaction temperature, this process significantly red-shifts the emission peak of the target material while effectively narrowing its emissive width and greatly enhancing its optoelectronic performance.

View Article and Find Full Text PDF

Fluorine-modified passivator for efficient vacuum-deposited pure-red perovskite light-emitting diodes.

Light Sci Appl

March 2025

Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.

Vacuum-deposited perovskite light-emitting diodes (PeLEDs) have demonstrated significant potential for high-color-gamut active-matrix displays. Despite the rapid advance of green PeLEDs, red ones remain a considerable challenge because of the inferior photophysical properties of vacuum-deposited red-light-emitting materials. Here, a rationally designed fluorine-modified phosphine oxide additive was introduced to in-situ passivate vacuum-deposited perovskites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!