Organic dyes with photoluminescence in the second near-infrared window (NIR-II, 1000-1700 nm) are promising for bioimaging and optoelectronic devices. Photoluminescence quantum yield (PLQY) is a direct measure of their performance. Integrating sphere technology is effective in determining the absolute PLQY. However, the low PLQY values of most NIR-II organic fluorophores lead to significant measurement errors. Therefore, the most common method for PLQY determination is a relative approach using a photoluminescence spectrometer and a standard reference like IR-26. Although the relative method enables precise calculation of the PLQY ratio between the sample and the reference, the specific PLQY value of IR-26 is not clearly defined and is reported to range from 0.05% to 0.50%. Such a deviation can cause significant errors in relative PLQY measurements. In this study, it is reported that a bright organic fluorophore called TPE-BBT exhibits a high PLQY of 3.94% in THF, which can be accurately measured using a commercially available integrating sphere. Using TPE-BBT as a standard, the PLQY values of IR-26 in 1,2-dichloroethane and IR-1061 in dichloromethane are accurately determined to be 0.0284% and 0.182%, respectively. It is hoped that using this reliable standard will unify the evaluation criteria for NIR-II organic fluorophores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202411866 | DOI Listing |
J Am Chem Soc
March 2025
Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
Metal halide perovskites have excellent optoelectronic properties. This study aims to determine how the optoelectronic properties of a model perovskite, cesium lead bromide (CsPbBr), change with length and thickness in one dimension (1D). By examining the photophysics of CsPbBr quantum dots (QDs), nanowires (NWs), and nanorods (NRs), we observe the influence of confinement, exciton diffusion, and trapping on their optical properties.
View Article and Find Full Text PDFInorg Chem
March 2025
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
Cesium-lead halide perovskite nanomaterials have been considered new-generation emitters that can meet the requirements of high photoluminescence efficiency and the high color standard of Rec. 2020. However, their practical application is currently hindered by the challenge of achieving better stability and growth in green solvents.
View Article and Find Full Text PDFInorg Chem
March 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
Layered hybrid metal halide perovskites, characterized by their distinctive quantum well structures and significant exciton binding energies, exhibit exceptional fluorescence properties, rendering them ideal candidates for high light yield scintillators. However, significant challenges remain in synthesizing layered metal halide perovskites with high photoluminescence quantum yields (PLQY), large Stokes shifts, and stable radioluminescence (RL). In this study, a stable Mn(II)-doped layered perovskite was successfully synthesized.
View Article and Find Full Text PDFSmall
March 2025
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Synthetic methodology is a fundamental framework for preparing functional materials, significantly advancing their development. Herein, a novel 6π electrocyclization reaction is unexpectedly discovered that promotes further ring closure in materials derived from multi-resonance thermally activated delayed fluorescence (MR-TADF) compounds, known for their narrow emission. By simply raising the reaction temperature, this process significantly red-shifts the emission peak of the target material while effectively narrowing its emissive width and greatly enhancing its optoelectronic performance.
View Article and Find Full Text PDFLight Sci Appl
March 2025
Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
Vacuum-deposited perovskite light-emitting diodes (PeLEDs) have demonstrated significant potential for high-color-gamut active-matrix displays. Despite the rapid advance of green PeLEDs, red ones remain a considerable challenge because of the inferior photophysical properties of vacuum-deposited red-light-emitting materials. Here, a rationally designed fluorine-modified phosphine oxide additive was introduced to in-situ passivate vacuum-deposited perovskites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!