[Evaluation of flavonoids in based on metabolomics and network pharmacology].

Sheng Wu Gong Cheng Xue Bao

National Key Laboratory for Efficient Production of Forest Resources, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.

Published: February 2025

Flavonoids are key bioactive components for evaluating the pharmacological activities of . Exploring the potential flavonoids and pharmacological mechanisms of . lays a foundation for the rational development and efficient utilization of this plant. This study employed ultra-performance liquid chromatography-tandem mass spectrometry-based widely targeted metabolomics to comprehensively identify the flavonoids in . . Network pharmacology was employed to explore the bioactive flavonoids and their mechanisms of action. Molecular docking was adopted to validate the predicted results. Finally, the content of bioactive flavonoids in different varieties of . was measured. The widely targeted metabolomics analysis identified 387 flavonoids in . , and the flavonoids varied among different varieties. Network pharmacology predicted 96 chemical components including 19 bioactive compounds, 181 corresponding targets and 2 504 disease targets, among which 99 targets were shared by the active components and the disease. Thirty-three core targets were predicted, involving 229 gene ontology terms and 99 pathways (≤0.05), which indicated that the flavonoids components of . exhibited pharmacological activities including antioxidant, anti-inflammatory, antimicrobial, and antiviral activities. Topological analysis screened out five core components (salvigenin, laricitrin, isorhamnetin, quercetin, and 6-hydroxyluteolin) and five core targets (SRC, PIK3R1, AKT1, ESR1, and AKR1C3). The predicted bioactive flavonoids from . stably bound to key targets, which indicated that these flavonoids possessed potential bioactivities in their interactions with the targets. The flavonoids in . exerted pharmacological activities in a multi-component, multi-target, and multi-pathway manner. The combined application of metabolomics and network pharmacology provides a theoretical basis for in-depth studies on the pharmacological effects and mechanisms of . .

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.240548DOI Listing

Publication Analysis

Top Keywords

pharmacological activities
12
network pharmacology
12
bioactive flavonoids
12
flavonoids
11
metabolomics network
8
targeted metabolomics
8
core targets
8
indicated flavonoids
8
targets
7
bioactive
5

Similar Publications

The CD2-depleting drug alefacept (LFA3-Ig) preserved beta cell function in new-onset type 1 diabetes (T1D) patients. The most promising biomarkers of response were late expansion of exhausted CD8 T cells and rare baseline inflammatory islet-reactive CD4 T cells, neither of which can be used to measure responses to drug in the weeks after treatment. Thus, we investigated whether early changes in T cell immunophenotypes could serve as biomarkers of drug activity.

View Article and Find Full Text PDF

Natural killer (NK) cells are a promising approach for cellular cancer immunotherapy and are being investigated to treat patients with multiple myeloma (MM). We found that MM patient blood NK cell frequencies were normal with increased activating receptors and cytotoxic granules, without evidence of functional exhaustion. Despite this activated state, MM target cells were resistant to conventional NK cells by unclear mechanisms.

View Article and Find Full Text PDF

Immune suppression sustained allograft acceptance requires PD1 inhibition of CD8+ T cells.

J Immunol

January 2025

Division of Infectious Diseases, Center for Inflammation and Tolerance, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells.

View Article and Find Full Text PDF

Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation.

View Article and Find Full Text PDF

Food allergy has had a rapid rise in prevalence, and thus it is important to identify approaches to limit the development of food allergy early in life. Because maternal dietary supplementation with α-tocopherol (α-T), an isoform of vitamin E, during pregnancy and nursing increases neonate plasma levels of α-T and can limit neonate development of other allergies, we hypothesized that α-T can limit development of food allergy. To assess this, male mice with mutations in their skin barrier genes (FT-/- mice) were mated with wild-type females that received a diet supplemented with α-tocopherol or a control diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!