Testis-specific transcript 10 (Tex10) is highly expressed in the testis, embryonic stem cells (ESCs), and primordial germ cells (PGCs). We previously generated a Tex10 knockout mouse model demonstrating its critical roles in ESC pluripotency and preimplantation development. Here, using conditional knockout mice and dTAG-degron ESCs, we show Tex10 is required for spermatogenesis and ESC-to-PGCLC differentiation. Specifically, Tex10-null spermatocytes arrest at metaphase I, compromising round spermatid formation. Tex10 depletion and overexpression compromise and enhance ESC-to-PGCLC differentiation, respectively. Mechanistically, bulk and single-cell RNA sequencing reveals that Tex10 depletion downregulates genes involved in pluripotency, PGC development, and spermatogenesis while upregulating genes promoting somatic programs. Chromatin occupancy study reveals that Tex10 binds to H3K4me3-marked promoters of Psmd3 and Psmd7, negative regulators of Wnt signaling, and activates their expression, thereby restraining Wnt signaling. Our study identifies Tex10 as a previously unappreciated factor in spermatogenesis and PGC development, offering potential therapeutic insights for treating male infertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847947 | PMC |
http://dx.doi.org/10.1038/s41467-025-57165-2 | DOI Listing |
Clin Chim Acta
March 2025
Department of Medicine, Hunan University of Arts and Science, Changde, Hunan Province 415000, China.
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with increasing incidence and poor survival rates, primarily due to late-stage diagnosis. This cancer often develops from Barrett's Esophagus (BE), a precancerous condition linked to chronic gastroesophageal reflux disease (GERD). The transition from BE to EAC is a complex multistep process involving numerous genetic, epigenetic, and molecular changes that lead to the malignant transformation of the esophageal epithelium.
View Article and Find Full Text PDFDrug Resist Updat
March 2025
Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China. Electronic address:
Aims: Prostate cancer (PCa) remains a significant challenge in oncology due to high rates of drug resistance following standard treatment with docetaxel-based chemotherapy. Asporin (ASPN) has been regarded as an oncogene and its upregulation is closely associated with malignant behavior and poor prognosis in multiple cancers. Studies indicated that abnormal activation of the Wnt/β-catenin signaling pathway is prevalent in PCa.
View Article and Find Full Text PDFCellular processes such as proliferation, differentiation, and tissue homeostasis are significantly influenced by the Wnt/β-catenin signaling pathway. Dysregulation of this pathway has been implicated in the development of various types of cancer. This study focuses on the emerging role of kinesin superfamily proteins (KIFs) in modulating cancer signaling.
View Article and Find Full Text PDFMol Biotechnol
March 2025
The Third Clinical Medicine College, Ningxia Medical University (People's Hospital of Ningxia Hui Autonomous Region), Yinchuan, 750002, China.
The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17.
View Article and Find Full Text PDFAging Dis
March 2025
Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
Age-related alterations in the skeletal system are linked to decreased bone mass, a reduction in bone strength and density, and an increased risk of fractures and osteoporosis. Therapeutics are desired to stimulate bone regeneration and restore imbalance in the bone remodeling process. Quercetin (Qu), a naturally occurring flavonoid, induces osteogenesis; however, its solubility, stability, and bioavailability limit its therapeutic use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!