Podocyte injury associated with albuminuria and diabetic nephropathy (DN) progression. N6-methyladenosine (m6A) is a common form of epigenetic modification in eukaryotic cells and is known to be associated with a variety of disease processes. Its role in podocyte injury of DN remains poorly studied. We observed a higher expression of fat mass and obesity-associated protein (FTO) both in diabetic mice and human kidneys and DN podocytes in vitro, and the level of FTO was correlated with lipid accumulation. Furthermore, we confirmed that two selective FTO demethylation inhibitors meclofenamic acid (MA) and diacerein (DIA) administration effectively ameliorated lipotoxicity-induced podocyte injury, evidenced by restored autophagy, inhibition of apoptosis and inflammation, as well as mitigating endoplasmic reticulum stress (ERS) and mitochondrial damage both in vitro and vivo model of DN. Mechanistically, FTO demethylation inhibitors downregulated Acetyl-CoA-carboxylase 1 (ACC1) levels in db/db mice and advanced glycation end product (AGE)-treated podocytes, subsequently decreased podocyte fatty acid accumulation. ACC1 was identified as a direct FTO target in which FTO stabilizes ACC1 mRNA with the mediation of YTH domain-containing family protein 2 (YTHDF2) in an m6A-dependent manner using m6A RNA immunoprecipitation-quantitative real-time PCR (MeRIP-qPCR) and dual-luciferase reporter gene assays. Collectively, our findings demonstrate an important role of FTO mediated-m6A modification of ACC1 contributed to s lipotoxicity-mediated injury of DN podocytes, which provide fresh insights into the therapeutic strategies for DN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2025.116819 | DOI Listing |
Cell Biochem Biophys
March 2025
Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China.
Secretory phospholipase A2 group IB (sPLA2-IB) and M-type phospholipase A2 receptor (PLA2R) are closely related to proteinuria and idiopathic membranous nephropathy (IMN). Podocytes are important components of the glomerular filtration barrier and glucose metabolism, including glycolysis and tricarboxylic acid (TCA) cycle, is crucial for maintaining podocyte physiological function. Aberrant energy metabolism has been reported in proteinuria diseases, including diabetic nephropathy.
View Article and Find Full Text PDFCells
March 2025
Renal Division, Department of Medicine IV, Ludwig-Maximilians-University (LMU) Hospital, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany.
A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury.
View Article and Find Full Text PDFCells
March 2025
Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China.
Diabetic kidney disease (DKD) is a prevalent complication associated with diabetes in which podocyte dysfunction significantly contributes to the development and progression of the condition. Ring finger protein 183 (RNF183) is an ER-localized, transmembrane ring finger protein with classical E3 ligase activity. However, whether RNF183 is involved in glomerular podocyte dysfunction, which is the mechanism of action of DKD, is still poorly understood.
View Article and Find Full Text PDFInflammation
March 2025
Shanghai Putuo Central School of Clinical Medicine, Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Shanghai, 200062, China.
Diabetic kidney disease (DKD), a leading cause of end-stage renal disease (ESRD), poses a serious threat to global health. Aseptic inflammation and pyroptosis of podocytes are crucial factors contributing to the pathogenesis and progression of DKD. Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a novel class of antidiabetic agents widely used in clinical settings, may exert a protective effect on podocyte injury, although the underlying mechanisms remain poorly understood.
View Article and Find Full Text PDFCommun Biol
March 2025
Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
Membranous nephropathy (MN) is a primary glomerular disease commonly causing adult nephrotic syndrome. Characterized by thickened glomerular capillary walls due to immune complex deposition, MN is a complex autoimmune disorder. Its pathogenesis involves immune deposit formation, complement activation, and a heightened risk of renal failure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!