The overexpression of pyruvate dehydrogenase kinase 1 (PDK1) has been observed in a number of different cancers, making it a potential target for the treatment of cancer. In this study, we used bioinformatics methods to analyse the immunophenotype of osteosarcoma (OS) and identified PDK1 as a critical factor in the different immune states of the disease. A pan-cancer analysis revealed a robust correlation between PDK1 and the tumour microenvironment. Moreover, our findings corroborate the overexpression of PDK1 in OS, whereby it facilitates tumour development via the NF-κB pathway. From a mechanistic perspective, PDK1 has the capacity to bind and phosphorylate USP5. The phosphorylation of USP5 by PDK1 activates its deubiquitinating activity, leading to the stabilisation of IKKγ protein and subsequent activation of the NF-κB signalling pathway, which ultimately promotes the growth of OS cells. Molecular simulation docking, pull-down assays, and SIP experiments were employed to further identify arctigenin (ATG) as a small molecule inhibitor of PDK1. The findings demonstrated that ATG effectively inhibited the growth of OS cells and tumour xenograft models. Collectively, these results highlight that PDK1 influences NF-κB in OS through the PDK1-USP5-IKKγ axis. Furthermore, the identification of ATG as an effective inhibitor of PDK1 suggests that ATG may serve as a promising lead compound for the treatment of OS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.141378 | DOI Listing |
Apoptosis
March 2025
Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Mitochondrial homeostasis plays a major role in the progression of chronic inflammatory bone loss which has a complex pathogenesis with unsatisfactory therapeutic efficiency. Recently, melatonin has been shown to recipient mitochondrial function and bone formation. However, the effects and underlying molecular mechanism of melatonin in chronic inflammatory bone loss remain unclear.
View Article and Find Full Text PDFCancer Cell
March 2025
National Experimental Teaching Center of Basic Medical Science, Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, Nanjing, China. Electronic address:
Cuproptosis represents a new type of cell death that intricately associated with copper homeostasis and protein lipoylation. The cuproptosis suppression has been characterized in the hypoxic tumor microenvironment (TME). Here we reveal that hypoxia inducible factor-1α (HIF-1α) is a driver of cuproptosis resistance in solid tumor.
View Article and Find Full Text PDFCardiovasc Res
March 2025
Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
Aims: Abdominal aortic aneurysm (AAA) is a life-threatening condition where inflammation plays a key role. Currently, AAA treatment relies exclusively on surgical interventions, and no guideline drug therapy to prevent aneurysm growth or rupture is available. Pharmacological reprogramming of immune cell metabolism, through the modulation of the pyruvate dehydrogenase kinase/pyruvate dehydrogenase (PDK/PDH) axis, has been identified as an attractive strategy to combat inflammation.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
College of Life Sciences, Northwest University, Xi'an 710069, China.
Anthocyanins compounds, including cyanidin, malvidin, pelargonidin, peonidin, and petunidin, have demonstrated remarkable anti-aging and insulin-sensitizing properties through their interactions with proteins associated with the insulin/insulin-like growth factor signaling (IIS) pathway in , employing advanced molecular docking techniques to elucidate strong binding affinities between specific anthocyanins and key proteins such as , , and in , suggesting a potential mechanism for their anti-aging effects. These findings not only provide critical insights into the therapeutic potential of anthocyanins for mitigating insulin resistance and promoting longevity, but also highlight the efficacy of in silico molecular docking as a predictive tool for small-molecule-protein interactions. Our research opens new avenues for the development of innovative therapeutic strategies targeting age-related diseases.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
February 2025
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
The protein kinase A/protein kinase G/protein kinase C-family (AGC kinase family) of eukaryotes is involved in regulating numerous biological processes. The 3-phosphoinositide- dependent protein kinase 1 (PDK1), is a conserved serine/threonine kinase in eukaryotes. To understand the roles of homologous genes in cell death and immunity in tetraploid , the previuosly generated transgenic CRISPR/Cas9 lines, in which 5-7 alleles of the 4 homologous genes (/// homologs) simultaneously knocked out, were used in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!