Secondary metabolites in fungi exhibit various biological activities and serve as important sources of natural compounds for agricultural development and applications. The pks1 gene, which is implicated in anthraquinone biosynthesis, encodes a non-reducing polyketide synthase in Monascus purpureus YY-1. To elucidate the function of pks1, a knockout strain (Δpks1) was successfully generated. Deletion of pks1 resulted in increased biomass, significantly larger colony diameters, as well as a more rounded and regular morphology of the cleistothecia. Transcriptome data indicated that the deletion of pks1 altered several pathways involved in primary metabolism, resulting in the accumulation of acetyl-CoA. The accumulated acetyl-CoA was diverted into the synthesis pathways of other secondary metabolites, such as Monascus-type azapilone pigments (MonAzPs) and citrinin. Liquid fermentation results showed that the yield of MonAzPs increased by 38 %, whereas the yield of citrinin increased by 69 %. These results indicate that pks1 catalyzes the formation of eight C2 units prior to the synthesis of intermediates in the anthraquinone carbon skeleton formation process and influences the biosynthetic pathways of MonAzPs and citrinin. This study provides a basis for further exploration of the biosynthesis of anthraquinones compounds in Monascus species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.141399 | DOI Listing |
Int J Biol Macromol
February 2025
Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
Secondary metabolites in fungi exhibit various biological activities and serve as important sources of natural compounds for agricultural development and applications. The pks1 gene, which is implicated in anthraquinone biosynthesis, encodes a non-reducing polyketide synthase in Monascus purpureus YY-1. To elucidate the function of pks1, a knockout strain (Δpks1) was successfully generated.
View Article and Find Full Text PDFPlant Cell Rep
February 2025
College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
PcPKS1 can prevent PcCSN5a from acting as an inhibitor of anthocyanin synthesis by binding to PcCSN5a, ultimately leading the accumulation of anthocyanins. Light is a crucial environmental factor that regulates anthocyanin accumulation in plants. However, the molecular mechanisms by which light signals influence anthocyanin accumulation in fruits have not yet been fully elucidated.
View Article and Find Full Text PDFWorld J Clin Cases
December 2024
Department of Infectious Diseases, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian Province, China.
Background: Tuberculosis is a chronic infectious disease and an important public health problem. Despite progress in controlling tuberculosis, the incidence of tuberculosis in China is still very high, with 895000 new cases annually. This case report describes the investigation of a case of severe disseminated tuberculosis in a young adult with normal immune function, conducted to ascertain why a () strain caused such severe disease.
View Article and Find Full Text PDFGenetics
October 2024
Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA.
One problem that has hampered the use of red fluorescent proteins in the fast-developing nematode Caenorhabditis elegans has been the substantial time delay in maturation of several generations of red fluorophores. The recently described mScarlet-I3 protein has properties that may overcome this limitation. We compare here the brightness and onset of expression of CRISPR/Cas9 genome-engineered mScarlet, mScarlet3, mScarlet-I3, and GFP reporter knock-ins.
View Article and Find Full Text PDFDev Biol
December 2024
Department of Biology, Duke University, Durham, NC, USA. Electronic address:
Dicer substrate interfering RNAs (DsiRNAs) destroy targeted transcripts using the RNA-Induced Silencing Complex (RISC) through a process called RNA interference (RNAi). This process is ubiquitous among eukaryotes. Here we report the utility of DsiRNA in embryos of the sea urchin Lytechinus variegatus (Lv).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!