Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review.

Int J Biol Macromol

Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China. Electronic address:

Published: February 2025

Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141235DOI Listing

Publication Analysis

Top Keywords

metal nanoparticles
28
carbohydrate polymers
16
nanoparticles
10
cancer therapy
8
nanoparticles modification
8
modification metal
8
nanoparticles carbohydrate
8
drug delivery
8
polymers improve
8
metal
7

Similar Publications

Multifunctional Liposomes with Enhanced Stability for Imaging-Guided Cancer Chemodynamic and Photothermal Therapy.

ACS Biomater Sci Eng

March 2025

Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China.

Improvements in tumor therapy require a combination of strategies where targeted treatment is critical. We developed a new versatile nanoplatform, MA@E, that generates high levels of reactive oxygen species (ROS) with effective photothermal conversions in the removal of tumors. Enhanced stability liposomes were employed as carriers to facilitate the uniform distribution and stable storage of encapsulated gold nanorods (AuNRs) and Mn-MIL-100 metal-organic frameworks, with efficient delivery of MA@E to the cytoplasm.

View Article and Find Full Text PDF

Manganese-based nanoenzymes: from catalytic chemistry to design principle and antitumor/antibacterial therapy.

Nanoscale

March 2025

Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.

Manganese (Mn)-based materials have been extensively investigated for a wide range of biomedical applications owing to their remarkable catalytic chemistry, magnetic resonance imaging (MRI) capacity, biodegradability, low toxicity, and good biosafety. In this review, we first elaborate on the catalytic principle of Mn-based nanoenzymes for antitumor and antibacterial therapy, followed by a comprehensive discussion of the interesting structural design engineering strategies used to achieve multi-dimensional Mn-based nanoarchitectures, such as zero-dimensional (0D) nanoparticles, 1D nanotubes, 2D nanosheets, 3D hollow porous Mn ball, and core-shell nanostructures. Moreover, the therapeutic applications of different Mn-based nanoenzymes, including manganese dioxide (MnO)-based nanoenzymes that can trigger catalytic reactions, Mn-doped metal nanoenzymes and Mn-coordinated nanoenzymes that promote hydroxyl/reactive oxygen species (ROS) generation, and MnO-based micro/nanorobots that can effectively penetrate tumor tissues, are critically reviewed.

View Article and Find Full Text PDF

Background: Selenium nanoparticles (SeNPs) show high therapeutic potential. SeNPs obtained by green synthesis methods, using commonly available plants, are an attractive alternative to nanoparticles obtained by classical, chemical methods. The green synthesis process uses environmentally friendly reagents, which offer an eco-friendly advantage.

View Article and Find Full Text PDF

Optimization of Metal-Based Nanoparticle Composite Formulations and Their Application in Wound Dressings.

Int J Nanomedicine

March 2025

Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.

Metal-based nanoparticles (MNPs) have great potential for applications in wound healing and tissue engineering, and due to their unique structures, high bioactivities, and excellent designability characteristics, an increasing number of studies have been devoted to modifying these species to generate novel composites with desirable optical, electrical, and magnetic properties. However, few systematic and detailed reviews have been performed relating to the modification approaches available for MNPs and their resulting composites. In this review, a comprehensive summary is performed regarding the optimized modification formulations of MNPs for application in wound dressings, and the techniques used to prepare composite wound dressings are discussed.

View Article and Find Full Text PDF

Natural enzymes, despite their superior catalytic proficiency, are frequently constrained by their environmental sensitivity and the intricacies associated with their extraction and preservation. Consequently, there has been a significant impetus in the scientific community to develop robust, economical, and accessible enzyme mimics. In this context, transition metal borides have risen to prominence as auspicious contenders, capitalizing on their distinctive electronic and catalytic attributes to replicate the functionalities of natural enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!