Background: Diabetic kidney disease (DKD) represents the primary aetiological factor in end-stage renal disease, wherein lipid metabolism disorders contribute to the progression of DKD. Baicalin, a composition from Scutellaria baicalensis, has exhibited the potential to mitigate lipid metabolism disorders of DKD, but the precise mechanisms remain unclear.

Methods: High-fat-diet (HFD)/streptozotocin (STZ)-induced DKD mouse model was established to appraise the effects of baicalin on renal function, dyslipidemia, and renal ectopic lipid deposition. The effects of baicalin on lipid accumulation in vitro were assessed in tubular epithelial cells derived from mice (TCMK-1) treated with palmitic acid (PA). The potential targets of baicalin were identified by drug affinity responsive target stability (DARTS) -LC/MS. The impact of the identified target on lipid metabolism was elucidated in TCMK-1 cells through both knockdown and overexpression experiments.

Results: The findings indicated that baicalin effectively mitigated dyslipidemia and renal ectopic lipid deposition in the HFD/STZ-induced DKD mouse model. FK506-binding protein 51(FKBP51) was identified as an endogenous target of baicalin, with the Tyr113 residue playing a crucial role in the binding interaction. Additionally, FKBP51 knockdown brought about intracellular lipid accumulation, but FKBP51 overexpression was found to effectively counteract the lipid accumulation induced by PA. Further investigation revealed that FKBP51 regulates lipid accumulation through the Tyr113 residue. Notably, the lipid-lowering effect of baicalin was diminished following FKBP51 knockdown.

Conclusion: This study first identifies that FKBP51 is beneficial for lipid metabolism homeostasis in DKD and suggests baicalin as an effective molecule for targeting FKBP51 in the treatment of lipid metabolism disorders associated with DKD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2025.156473DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
24
metabolism disorders
16
lipid accumulation
16
lipid
12
baicalin
9
diabetic kidney
8
kidney disease
8
targeting fkbp51
8
dkd mouse
8
mouse model
8

Similar Publications

Background: GPR171 suppresses T cell immune responses involved in antitumour immunity, while its role in inflammatory bowel disease (IBD) pathogenesis remains unclear.

Objective: We aimed to investigate the role of GPR171 in modulating CD4 T cell effector functions in IBD and evaluate its therapeutic potential.

Design: We analysed GPR171 expression in colon biopsies and peripheral blood samples from patients with IBD and assessed the impact of GPR171 on CD4 T cell differentiation through administration of its endogenous ligand (BigLEN).

View Article and Find Full Text PDF

In vitro study of a siRNA delivery liposome constructed with an ionizable cationic lipid.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Pharmaceutical Engineering, Chemistry and Chemical Engineering, Central South University, Changsha 410083.

Objectives: Small interfering RNA (siRNA) can silence disease-related genes through sequence-specific RNA interference (RNAi). Cationic lipid-based liposomes effectively deliver nucleic acids into the cytoplasm but often exhibit significant toxicity. This study aims to synthesize a novel ionizable lipid, Nε-laruoyl-lysine amide (LKA), from natural amino acids, constructed LKA-based liposomes, and perform physicochemical characterization and cell-based experiments to systematically evaluate the potential of these ionizable lipid-based liposomes for nucleic acid delivery.

View Article and Find Full Text PDF

Mitochondrial ACSS1-K635 acetylation knock-in mice exhibit altered liver lipid metabolism on a ketogenic diet.

Free Radic Biol Med

March 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA. Electronic address:

Acetyl-CoA Synthetase Short Chain Family Member-1 (ACSS1) catalyzes the ligation of acetate and coenzyme A to generate acetyl-CoA in the mitochondria to produce ATP through the tricarboxylic acid (TCA) cycle. We recently generated an ACSS1-acetylation (Ac) mimic knock-in mouse, where lysine 635 was mutated to glutamine (K635Q), which structurally and biochemically mimics an acetylated lysine. ACSS1 enzymatic activity is regulated, at least in part, through the acetylation of lysine 635 in mice (lysine 642 in humans), a Sirtuin 3 deacetylation target.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) is characterized by insulin resistance and defective insulin secretion. Previously, we found that rats fed soft pellets (SPs) on a 3-hour restricted schedule over 14 weeks demonstrated glucose intolerance and insulin resistance with disruption of insulin signaling.

Objective: To determine (1) the time required for an SP diet to induce insulin resistance, and (2) whether the metabolic derangements in rats fed SPs can be reversed by changing to a standard control diet.

View Article and Find Full Text PDF

Synergistic regulation of colon microflora and metabolic environment by resistant starch and sodium lactate in hyperlipidemic rats.

Int J Biol Macromol

March 2025

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Type 3 resistant starch (RS3) regulates diet-related metabolic diseases by promoting intestinal short-chain fatty acids (SCFAs) and lactate production, and facilitating microbial lactate-to-butyrate fermentation. However, its precise in vivo mechanism remains unclear. Therefore, we studied the effects of type 3 lotus seed resistant starch (LRS3) and sodium lactate (SL) on colonic microbiota composition, metabolism, and lipid parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!