Background: Silicosis is a chronic fibrotic pulmonary disease caused by consistent inhalation of respirable crystalline-free silica dust. The senescence of alveolar epithelial type II cells (ATII) is considered the initiation of pulmonary fibrosis. As a secreted protein, growth differentiation factor 15 (GDF15) was found intimately associated with the severity of lung diseases via senescence. Therefore, we speculate that GDF15 may involved in silica-induced pulmonary fibrosis.
Methods: Co-culture was performed to observe the pro-fibrotic effect of GDF15, which is secreted from the silica-induced senescence ATII cells, on peripheral effector cells. We further explored GDF15-related signaling pathways via ChIP and IP assays. GDF15 siRNA lipid nanoparticles, anti-aging compound β-nicotinamide mononucleotide (NMN), and the Chinese traditional drug Bazibushen (BZBS) were used individually to intervene silicosis progress.
Results: SiO and etoposide-stimulated MLE-12 cells showed senescence phenotype and secreted substantial GDF15, which is consistent with over-expressed GDF15 in lung tissues from silica-induced pulmonary fibrosis. The results further demonstrated that senescence ATII cells could facilitate co-cultured epithelial cell epithelial-mesenchymal transition (EMT) and fibroblast activation in a GDF15-dependent manner. Mechanistically, p53 regulates GDF15 transcription and secretion in senescence ATII cells. Moreover, secreted GFD15 performed its pro-fibrotic role by directly binding to TGF-βR via autocrine and paracrine manners. Also, lipid nanoparticles targeting GDF15 or cell senescence inhibitor NMN and BZBS showed efficient anti-fibrotic effects in vivo.
Conclusions: Our results elucidate that senescence ATII cell-secreted GDF15 plays a vital role in promoting silicosis by influencing surrounding cells, and provides scientific clues for the selection of potential therapeutic drugs for silicosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2025.117917 | DOI Listing |
Ecotoxicol Environ Saf
February 2025
Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 320700, China. Electronic address:
Background: Silicosis is a chronic fibrotic pulmonary disease caused by consistent inhalation of respirable crystalline-free silica dust. The senescence of alveolar epithelial type II cells (ATII) is considered the initiation of pulmonary fibrosis. As a secreted protein, growth differentiation factor 15 (GDF15) was found intimately associated with the severity of lung diseases via senescence.
View Article and Find Full Text PDFAging Dis
January 2025
Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA.
Homeostatic imbalance and lung function decline are central physiological characteristics of aging and susceptibility to respiratory diseases. Senescence contributes to tissue damage and alveolar epithelial cell injury and decreases reparative capacity. Alveolar type II (ATII) cells have stem cell potential and self-renew to regenerate the alveoli after damage.
View Article and Find Full Text PDFCell Commun Signal
November 2024
Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
Eur Respir J
December 2024
Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
Emphysema, the progressive destruction of gas exchange surfaces in the lungs, is a hallmark of COPD that is presently incurable. This therapeutic gap is largely due to a poor understanding of potential drivers of impaired tissue regeneration, such as abnormal lung epithelial progenitor cells, including alveolar type II (ATII) and airway club cells. We discovered an emphysema-specific subpopulation of ATII cells located in enlarged distal alveolar sacs, termed asATII cells.
View Article and Find Full Text PDFPhytomedicine
October 2024
Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China. Electronic address:
Background: Treating Idiopathic pulmonary fibrosis (IPF) remains challenging owing to its relentless progression, grim prognosis, and the scarcity of effective treatment options. Emerging evidence strongly supports the critical role of accelerated senescence in alveolar epithelial cells (AECs) in driving the progression of IPF. Consequently, targeting senescent AECs emerges as a promising therapeutic strategy for IPF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!