Interleukin-6 (IL-6) plays a pivotal role in the inflammatory response of diabetic wounds, providing critical insights for clinicians in the development of personalized treatment strategies. However, the low concentration of IL-6 in biological samples, coupled with the presence of numerous interfering substances, poses a significant challenge for its rapid and accurate detection. Herein, we present a dual-mode microfluidic platform integrating electrochemical (EC) and surface-enhanced Raman spectroscopy (SERS) to achieve the timely and highly reliable quantification of IL-6. Efficient binding between IL-6 and antibody-conjugated SERS nanoprobes is obtained through a square-wave micromixer with nonleaky obstacles, forming sandwich immunocomplexes with IL-6 capture antibodies on the working electrode in the detection area, enabling acquisition of both EC and SERS signals. This microfluidic platform demonstrates excellent selectivity and sensitivity, with detection limits of 0.085 and 0.047 pg/mL for EC and SERS modes, respectively. Importantly, by incorporating a neural network (NN) with a self-attention (SA) mechanism to evaluate the relative weights of data from both modes, the platform achieves a quantitative accuracy of up to 99.8% across a range of 0.05-1000 pg/mL, demonstrating significant performance at low concentrations. Moreover, the NN-enhanced dual-mode microfluidic platform effectively detects IL-6 in diabetic wound exudates with results that align closely with clinical data. This integrated dual-mode microfluidic platform offers promising potential for the rapid and accurate detection of cytokines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c05537DOI Listing

Publication Analysis

Top Keywords

microfluidic platform
20
dual-mode microfluidic
16
accurate detection
12
diabetic wound
8
wound exudates
8
rapid accurate
8
platform
6
il-6
6
microfluidic
5
detection
5

Similar Publications

Distance-Readout Paper-Based Microfluidic Chip with a DNA Hydrogel Valve for AFB1 Detection.

Anal Chem

March 2025

Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China.

Accurate and rapid aflatoxin B1 (AFB1) detection is essential for ensuring the safety of food supplies. In this paper, we introduce a distance-readout paper-based microfluidic chip (DPMC) that offers a sensitive and reliable method for the detection of AFB1. The DPMC comprises a DNA hydrogel sensitive valve and a paper-based capillary channel.

View Article and Find Full Text PDF

Cancer is a serious disease in human beings, and its high lethality is mainly due to the invasion and metastasis of cancer cells. Clinically, the accumulation and high orientation of collagen fibrils were observed in cancerous tissue, which occurred not only at the location of invasion but also at 10-20 cm from the tumor. Studies indicated that the invasion of cancer cells could be guided by the oriented collagen fibrils, even in a dense matrix characterized by difficulty degradation.

View Article and Find Full Text PDF

The rapid growth in data generation presents a significant challenge for conventional storage technologies. DNA storage has emerged as a promising solution, offering substantially greater storage density and durability. However, the current DNA data writing process is costly and labor-intensive, hindering the commercialization of DNA data storage.

View Article and Find Full Text PDF

Experiments with gradients of soluble bioactive species have significantly advanced with microfluidic developments that enable cell observation and stringent control of environmental conditions. While some methodologies rely on flow to establish gradients, others opt for flow-free conditions, which is particularly beneficial for studying non-adherent and/or shear-sensitive cells. In flow-free devices, bioactive species diffuse either through resistive microchannels in microchannel-based devices, through a porous membrane in membrane-based devices, or through a hydrogel in gel-based devices.

View Article and Find Full Text PDF

Background: Recent studies indicate that up to 36% of pediatric and adult kidney transplant recipients with stable serum creatinine levels will have acute rejection detected on surveillance biopsy. The purpose of this study was to develop and validate a risk algorithm for identifying low- and high-risk patients using a novel automated platform that simultaneously measures urinary CCL2, CXCL9, CXCL10 and VEGF-A with high precision.

Methods: We designed a multicenter observational study to evaluate the performance of urinary CCL2, CXCL9, CXCL10 and VEGF-A in a training set of 517 banked samples collected at the time of surveillance or indication kidney biopsies from both adult and pediatric recipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!