All cancers are diseases of the genome, since the cancer cell genome typically consists of 10,000s of passenger alterations, 5-10 biologically relevant alterations, and 1-2 "actionable" alterations. Therefore, somatic mutations in cancer cells can have diagnostic, prognostic, and predictive value. Traditional methods are widely used for testing, such as immunohistochemistry, Sanger sequencing, and allele-specific PCR. However, due to the low throughput, these methods are focused exclusively on testing the most common mutations in target genes. The modern next generation sequencing (NGS) is a technology that enables precision oncology in its current form. ESCAT and ESMO Guidelines defined NGS for routine use in patients with advanced cancers such as non-squamous non-small cell lung cancer, prostate cancer, ovarian cancer, and cholangiocarcinoma. The high sensitivity of the NGS method allows it to be used to search for specific mutations in circulating tumor DNA in blood plasma and other body fluids. NGS testing has evolved from hotspot panels, actionable gene panels, and disease-specific panels to more comprehensive panels. The exome and whole genome sequencing approaches are just beginning to emerge, that is why panel-based testing remains most optimal in oncology practice. NGS is also widely used to identify new and rare mutations in cancer genes and detect inherited cancer mutations.

Download full-text PDF

Source
http://dx.doi.org/10.15407/exp-oncology.2024.04.295DOI Listing

Publication Analysis

Top Keywords

cancer
8
mutations cancer
8
mutations
5
ngs
5
application next-generation
4
sequencing
4
next-generation sequencing
4
sequencing realize
4
realize principles
4
principles precision
4

Similar Publications

Historical studies performed nearly a century ago using mouse skin models identified two key steps in cancer evolution: initiation, a likely mutational event, and promotion, driven by inflammation and cell proliferation. Initiation was proposed to be permanent, with promotion as the critical rate-limiting step for cancer development. Here, we carried out whole genome sequencing to demonstrate that initiated cells with thousands of mutagen-induced mutations can persist for long periods and are not removed by cell competition or by immune intervention, thus mimicking the persistence of cells with cancer driver mutations in normal human tissues.

View Article and Find Full Text PDF

A novel pheophorbide derivative, trimethyl-152-[L-aspartyl]pheophorbide a was synthesised and investigated for anti-tumor activity. The prepared photosensitizer had good absorption in the phototherapeutic window and high ROS yields. It exhibited excellent phototoxicity higher than reference compound m-THPC when irradiated by 650 nm light in vitro, and obvious photodynamic anti-tumor effect in vivo.

View Article and Find Full Text PDF

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

Pituitary neuroendocrine tumors (PitNETS) are common intracranial tumors, but extrasellar or ectopic PitNETS are very rare and supposed to originate from some pituitary remnants. They are mostly found in sphenoidal sinus. But particularly, ectopic clival PitNETS are highly aggressive and can cause bone invasion and can be misdiagnosed as other lesions of the skull base such as chordomas.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!