Background: The ongoing emergence of evolving SARS-CoV-2 variants poses great threaten to the efficacy of authorized monoclonal antibody-based passive immunization or treatments. Developing potent broadly neutralizing antibodies (bNabs) against SARS-CoV-2 and elucidating their potential evolutionary pathways are essential for battling the coronavirus disease 2019 (COVID-19) pandemic.

Methods: Broadly neutralizing antibodies were isolated using single cell sorting from three COVID-19 convalescents infected with prototype SARS-CoV-2 strain. Their neutralizing activity against diverse SARS-CoV-2 strains were tested in vitro and in vivo, respectively. The structures of antibody-antigen complexes were resolved using crystallization or Cryo-EM method. Antibodyomics analyses were performed using the non-bias deep sequencing results of BCR repertoires.

Results: We obtained a series of RBD-specific monoclonal antibodies with highly neutralizing potency against a variety of pseudotyped and live SARS-CoV-2 variants, including five global VOCs and some Omicron subtypes such as BA.1, BA.2, BA.4/5, BF.7, and XBB. 2YYQH9 and LQLD6HL antibody cocktail also displayed good therapeutic and prophylactic efficacy in an XBB.1.16 infected hamster animal model. Cryo-EM and crystal structural analyses revealed that broadly neutralizing antibodies directly blocked the binding of ACE2 by almost covering the entire receptor binding motif (RBM) and largely avoided mutated RBD residues in the VOCs, demonstrating their broad and potent neutralizing activity. In addition, antibodyomics assays indicate that the germline frequencies of RBD-specific antibodies increase after an inactivated vaccine immunization. Moreover, the CDR3 frequencies of V presenting high amino acid identity with the broadly neutralizing antibodies were higher than those of V.

Conclusions: These data suggest that current identified broadly neutralizing antibodies could serve as promising drug candidates for COVID-19 and can be used for reverse vaccine design against future pandemics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844185PMC
http://dx.doi.org/10.1186/s12967-025-06162-6DOI Listing

Publication Analysis

Top Keywords

broadly neutralizing
24
neutralizing antibodies
24
neutralizing
9
antibodies
8
sars-cov-2 variants
8
neutralizing activity
8
broadly
6
sars-cov-2
6
function structure
4
structure broadly
4

Similar Publications

The removal of surface residues from single-layer graphene (SLG), including poly(methyl methacrylate) (PMMA) polymers and Cl ions, during the transfer process remains a significant challenge with regard to preserving the intrinsic properties of SLG, with the process often leading to unintended doping and reduced electronic performance capabilities. This study presents a rapid and efficient surface treatment method that relies on an aqueous sodium nitrite (NaNO) solution to remove such contaminants effectively. The NaNO solution rinse leverages reactive nitric oxide (NO) species to neutralize ionic contaminants (e.

View Article and Find Full Text PDF

Rapid clonal expansion and somatic hypermutation contribute to the fate of SARS-CoV-2 broadly neutralizing antibodies.

J Immunol

February 2025

Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.

Several vaccines and immunization strategies, including inactivated vaccines, have proven effective in eliciting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), providing an opportunity to characterize the antibody response. In this study, we investigated the monoclonal antibody responses elicited by wild-type SARS-CoV-2 inactivated vaccination compared to those elicited by natural infection and mRNA vaccination. The analysis showed that antibodies encoded by biased germline genes were shared between SARS-CoV-2 vaccinated and naturally infected individuals.

View Article and Find Full Text PDF

Natural killer (NK) cells can efficiently mediate antibody-dependent cellular cytotoxicity (ADCC) of antibody coated target cells via the low-affinity Fc-receptor, CD16, but cannot retain antibodies over time. To increase antibody retention and facilitate targeted ADCC, we genetically modified human NK cells with the high-affinity Fc receptor, CD64, so that we could preload them with HIV-specific broadly neutralizing antibodies (BNAbs) and enhance their capacity to target HIV-infected cells via ADCC. Purified NK cells from the peripheral blood of control donors or persons living with HIV were activated with interleukin (IL)-2/IL-15/IL-21 cytokines and transduced with a lentivirus encoding CD64.

View Article and Find Full Text PDF

Unlabelled: Filoviruses pose a significant threat to human health with frequent outbreaks and high mortality. Although two vector-based vaccines are available for Ebola virus, a broadly protective filovirus vaccine remains elusive. In this study, we evaluate a general strategy for stabilizing glycoprotein (GP) structures of Ebola, Sudan, and Bundibugyo ebolaviruses and Ravn marburgvirus.

View Article and Find Full Text PDF

Recruitment and expansion of rare precursor B cells in germinal centers (GCs) is a central goal of vaccination to generate broadly neutralizing antibodies (bnAbs) against challenging pathogens such as HIV. Multivalent immunogen display is a well-established method to enhance vaccine-induced B cell responses, typically accomplished by using natural or engineered protein scaffolds. However, these scaffolds themselves are targets of antibody responses, with the potential to generate competitor scaffold-specific B cells that could theoretically limit expansion and maturation of "on-target" B cells in the GC response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!