Creating chirality in achiral graphene and other two-dimensional materials has attracted broad scientific interest due to their potential application in advanced optics, electronics and spintronics. However, investigations into their optical activities and related chiro-electronic properties are constrained by experimental challenges, particularly in the precise control over the chirality of these materials. Here a universal wax-aided immersion method is developed to yield graphene rolls with controllable chiral angles, and the method can be generalized in other two-dimensional materials for high-yield fabrication. The left-handed and right-handed rolls exhibit optical activity and excellent spin selectivity effects with a spin polarization over 90% at room temperature. The discovery of tunable chirality-induced spin selectivity in tailored roll-shaped allotropes, achievable only through precise control of chirality, distinguishes itself from other carbon materials or existing chiral materials. Our Dirac fermion model shows that the electrons moving predominately along one side of the chiral roll develop a preferred spin polarization, and the rolling-chirality-induced spin selectivity is a result of this finite spin selectivity effect. Our method opens up opportunities for endowing achiral two-dimensional materials with tunable chirality, and may enable the emergence of quantum behaviours and room-temperature spintronic technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-025-02127-8 | DOI Listing |
Dentomaxillofac Radiol
March 2025
Radiology Center, Division of Integrated Facilities, Institute of Science Tokyo Hospital, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
Objective: To quantitatively and qualitatively compare directly two types of cisternography images for diagnosing trigeminal neuralgia (TN) using 3-T magnetic resonance imaging.
Methods: This prospective study recruited 64 patients with a clinical diagnosis or suspicion of TN. Patients were examined through the three-dimensional (3D) Constructive Interference in Steady State (CISS) and Sampling Perfection with Application-optimized Contrasts using different flip angle Evolutions (SPACE) sequences.
Dalton Trans
March 2025
School of Science and Technology, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS, UK.
There has been growing interest in recent years in the synthesis of multifunctional materials that exhibit both chirality and electrical conductivity. These materials can exhibit electrical magnetochiral anisotropy (eMChA) or the chirality induced spin selectivity (CISS) effect. Several families of chiral tetrathiafulvalene (TTF)-based donor molecules have been successfully used with acceptors or simple anions to prepare chiral molecular conductors.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China.
The electrocatalytic oxidation of benzyl alcohol to benzoic acid is a process that often requires high voltage, leading to increased energy consumption, side reactions (oxygen evolution reaction (OER)), and catalyst degradation. Herein, our study introduces a novel approach. We demonstrate that a PtZn-ZnO catalyst featuring a PtZn intermetallic structure with abundant PtZn-ZnO interfaces on the surface allows for the electrocatalytic oxidation of benzyl alcohol to benzoic acid with an impressive selectivity of 99.
View Article and Find Full Text PDFNat Commun
March 2025
Sungkyunkwan University, Suwon, Republic of Korea.
Light-matter interaction simultaneously alters both the original material and incident light. Light not only reveals material details but also activates coupling mechanisms. The coupling has been demonstrated mechanically, for instance, through the patterning of metallic antennas, resulting in the emergence of plasmonic quasiparticles and enabling wavefront engineering of light via the generalized Snell's law.
View Article and Find Full Text PDFJ Comput Chem
March 2025
J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague 8, Czech Republic.
A computational study of I-BODIPY (2-ethyl-4,4-difluoro-6,7-diiodo-1,3-dimethyl-4-bora-3a,4a-diaza-s-indacene) has been carried out to investigate its key photophysical properties as a potential triplet photosensitizer capable of generating singlet oxygen. Multireference CASPT2 and CASSCF methods have been used to calculate vertical excitation energies and spin-orbit couplings (SOCs), respectively, in a model (mono-iodinated BODIPY) molecule to assess the applicability of the single-reference second-order algebraic diagrammatic construction, ADC(2), method to this and similar molecules. Subsequently, time-dependent density functional theory (TD-DFT), possibly within the Tamm-Dancoff approximation (TDA), using several exchange-correlation functionals has been tested on I-BODIPY against ADC(2), both employing a basis set with a two-component pseudopotential on the iodine atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!