The microbiome of Saccharina latissima, an important brown macroalgal species in Europe, significantly influences its health, fitness, and pathogen resistance. Yet, comprehensive studies on the diversity and function of microbial communities (bacteria, eukaryotes, and fungi) associated with this species are lacking. Using metabarcoding, we investigated the epimicrobiota of S. latissima and correlated microbial diversity with metabolomic patterns (liquid chromatography coupled to tandem mass spectrometry). Specific epibacterial and eukaryotic communities inhabit the S. latissima surface, alongside a core microbiota, while fungal communities show lower and more heterogeneous diversity. Metabolomic analysis revealed a large diversity of mass features, including putatively annotated fatty acids, amino derivatives, amino acids, and naphthofurans. Multiple-factor analysis linked microbial diversity with surface metabolome variations, driven mainly by fungi and bacteria. Two taxa groups were identified: one associated with bacterial consortia and the other with fungal consortia, each correlated with specific metabolites. This study demonstrated a core bacterial and eukaryotic microbiota associated with a core metabolome and highlighted interindividual variations. Annotating the surface metabolome using Natural Products databases suggested numerous metabolites potentially involved in interspecies chemical interactions. Our findings establish a link between microbial community structure and function, identifying two microbial consortia potentially involved in the chemical defense of S. latissima.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879540 | PMC |
http://dx.doi.org/10.1093/femsec/fiae160 | DOI Listing |
FEMS Microbiol Ecol
February 2025
Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France.
The microbiome of Saccharina latissima, an important brown macroalgal species in Europe, significantly influences its health, fitness, and pathogen resistance. Yet, comprehensive studies on the diversity and function of microbial communities (bacteria, eukaryotes, and fungi) associated with this species are lacking. Using metabarcoding, we investigated the epimicrobiota of S.
View Article and Find Full Text PDFInt J Biol Macromol
February 2025
Department of Immunology, Landspitali-The National University Hospital of Iceland, IS-101 Reykjavik, Iceland; Faculty of Medicine, Biomedical Center, University of Iceland, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland.
This research explores the impact of structural variations in laminarins derived from seaweed on their immunomodulatory properties. Laminarins from Laminaria digitata, L. hyperborea, and Saccharina latissima, were obtained using a two-step water extraction protocol, followed by structural characterization by FT-IR spectroscopy, H NMR, and MALDI-TOF MS.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India.
Macroalgae growing in the polar regions are exposed to extreme environment conditions and may induce differences in the structural and bioactive properties of their polysaccharides. Six brown macroalgae viz. kelp species - Saccharina latissima, Laminaria digitata, and Alaria esculenta; rockweed Fucus distichus; and filamentous macroalgae - Chorda filum and Chordaria flageliformis, from the Arctic were investigated for polysaccharides and their bioactivity.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Institute of Marine Research IMR, Nye Flødevigveien 20, 4817 His, Norway.
Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
School of Applied Sciences, Division of Engineering and Food Science University of Abertay Dundee Scotland UK.
This study investigates the effects of three brown seaweed species (, , and ), their pre-processing treatments, and incorporation percentages on the physical and sensory properties of crackers. Significant ( ≤ 0.001) two-way and three-way interactions were observed for moisture content, with seaweed addition generally resulting in drier crackers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!