Rapid egestion of microplastics in juvenile barramundi: No evidence of gut retention or tissue translocation.

Environ Pollut

Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia.

Published: April 2025

Despite many reports of large microplastics being isolated from fish muscle, there are limited exposure studies documenting the transport of microplastics >10 μm from the gastrointestinal tract (GIT) to surrounding tissues. Moreover, egestion rates of microplastics are not commonly studied, especially for carnivorous fish. In this study, experimental data and a literature meta-analysis were combined to understand microplastic translocation to fish tissue and egestion rates. Juvenile barramundi (Lates calcifer) were exposed through their diet to polyamide (PA) fibres and polyethylene terephthalate (PET) fibres and fragments (8-547 μm in length) to determine if shape, size, and polymer type influence microplastic translocation and egestion rates. Despite the high concentration (∼5000 microplastics g) and variable range of PET sizes and shapes used, their translocation from the GIT into other tissues was not observed, thus demonstrating PET fragments and fibres are unlikely to accumulate within barramundi. Moreover, more than 90% of all ingested PET microplastics were egested in less than 24 h, with only one small fragment persisting to 96 h post exposure. Elimination half-lives ranged from 9.2 to 12.2 h, with small PET fragments egested at a faster rate than the larger PET fragments and fibres but with no significant differences. Due to methodological challenges, PA fibres were unable to be quantified amongst the digesta. The meta-analysis of published fish egestion rates revealed that, when considering multiple fish, gut morphology (i.e., presence of a true stomach) rather than microplastic size and shape influenced egestion rates across species. The results presented here demonstrate no concrete evidence for GIT accumulation or translocation into tissue with rapid and efficient egestion of ingested microplastics by fish. These results suggest microplastics are not likely to bioaccumulate in barramundi and/or directly impact their associated food web.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2025.125884DOI Listing

Publication Analysis

Top Keywords

egestion rates
20
pet fragments
12
microplastics
8
juvenile barramundi
8
microplastic translocation
8
fragments fibres
8
fish
6
egestion
6
pet
6
translocation
5

Similar Publications

Rapid egestion of microplastics in juvenile barramundi: No evidence of gut retention or tissue translocation.

Environ Pollut

April 2025

Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia.

Despite many reports of large microplastics being isolated from fish muscle, there are limited exposure studies documenting the transport of microplastics >10 μm from the gastrointestinal tract (GIT) to surrounding tissues. Moreover, egestion rates of microplastics are not commonly studied, especially for carnivorous fish. In this study, experimental data and a literature meta-analysis were combined to understand microplastic translocation to fish tissue and egestion rates.

View Article and Find Full Text PDF

Microplastic ingestion by an aquatic ciliate: Functional response, modulation, and reduced population growth.

Sci Total Environ

February 2025

Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom; Networks Unit, IMT School for Advanced Studies Lucca, Italy.

Microplastic particles are ubiquitous in aquatic environments and are considered a major threat to the large range of heterotrophic organisms that involuntarily consume them. However, there is current uncertainty around the mechanisms underpinning microplastic uptake by aquatic consumers and the consequences for both the fate of the microplastics and the growth potential of consumer populations. We performed a feeding experiment, exposing a model freshwater ciliate, Tetrahymena pyriformis, to six different microplastic concentrations and measured microplastic uptake and population growth over the course of several generations.

View Article and Find Full Text PDF

Effects of biological filtration by ascidians on microplastic composition in the water column.

Chemosphere

November 2024

School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, 69978, Israel. Electronic address:

Plastic pollution, a widespread environmental challenge, significantly impacts marine ecosystems. The degradation of plastic under environmental conditions results in the generation of microplastic (MP; <5 mm) fragments, frequently ingested by marine life, including filter-feeders such as ascidians (Chordata, Ascidiacea). These organisms are integral to benthic-pelagic coupling, transporting MP from the water column through marine food web.

View Article and Find Full Text PDF

Effects of food quantity on the ingestion and egestion of MPs with different colors by Daphnia magna.

Aquat Toxicol

July 2024

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Aquatic organism uptake and accumulate microplastics (MPs) through various pathways, with ingestion alongside food being one of the primary routes. However, the impact of food concentration on the accumulation of different types of MPs, particularly across various colors, remains largely unexplored. To address this gap, we selected Daphnia magna as a model organism to study the ingestion/egestion kinetics and the preference for different MP colors under varying concentrations of Chlorella vulgaris.

View Article and Find Full Text PDF

Surface functional groups on nanoplastics delay the recovery of gut microbiota after combined exposure to sulfamethazine in marine medaka (Oryzias melastigma).

Aquat Toxicol

February 2024

Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China. Electronic address:

Nanoplastics can interact with antibiotics, altering their bioavailability and the ensuing toxicity in marine organisms. It is reported that plain polystyrene (PS) nanoplastics decrease the bioavailability and adverse effects of sulfamethazine (SMZ) on the gut microbiota in Oryzias melastigma. However, the influence of surface functional groups on the combined effects with SMZ remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!