Suprabulbar and bulbospinal integration of cardiorespiratory responses to cold and heat stress was studied in groups of normal, thalamic and pontine rabbits. The animals sat in an airconditioned environmental chamber in which ambient temperature (TA) was maintained sequentially at 22 degrees C, 12 degrees C, 22 degrees C and 35 degrees C, with an accuracy of +/- 1 degree C. Neither thalamic nor pontine rabbits could maintain core temperature in cold or heat. At TA 35 degrees C, thalamic and pontine animals did not pant, indicating that telencephalic responses were necessary for the integration of mechanisms promoting respiratory heat loss. Thalamic animals, however, could inhibit ear vascular sympathetic tone in the heat, but the response was absent in pontine animals, suggesting diencephalic responses were essential for the integration of mechanisms promoting ear skin heat loss. Thus, the neural adjustments to thermal stress depend on mechanisms of integration distributed longitudinally throughout the central nervous system, and different components of the reflex cardiorespiratory response depend on different sites in the central nervous system for their full expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0165-1838(85)90063-3 | DOI Listing |
Neurobiol Pain
December 2024
Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States.
Chronic headaches and pain are prevalent in those who are exposure to blast events, yet there is a gap in fundamental data that identifies the pathological mechanism for the chronification of pain. Blast-related post-traumatic headaches (PTH) are understudied and chronic pain behaviors in preclinical models can be vital to help elucidate PTH mechanisms. The descending pain modulatory system controls pain perception and involves specific brain regions such as the cortex, thalamus, pons, and medulla.
View Article and Find Full Text PDFCell Rep
January 2025
Lendület Thalamus Research Group, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary. Electronic address:
Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Pain Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
Prosocial behaviors are advantageous to social species, but the neural mechanism(s) through which others receive benefit remain unknown. Here, we found that bystander mice display rescue-like behavior (tongue dragging) toward anesthetized cagemates and found that this tongue dragging promotes arousal from anesthesia through a direct tongue-brain circuit. We found that a direct circuit from the tongue → glutamatergic neurons in the mesencephalic trigeminal nucleus (MTN) → noradrenergic neurons in the locus coeruleus (LC) drives rapid arousal in the anesthetized mice that receive the rescue-like behavior from bystanders.
View Article and Find Full Text PDFNucl Med Commun
January 2025
Department of Nuclear Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian.
Objectives: Parkinson's disease (PD) is a neurodegenerative disorder with distinct metabolic alterations in the brain, which are detectable via 18F-FDG PET. This study aims to delineate glucose metabolism patterns and network topology changes across early- and mid-stage PD patients.
Methods: A total of 80 PD patients (Hoehn-Yahr stages 1-3) were retrospectively analyzed, including 40 early-stage and 40 mid-stage cases, along with 40 age-matched healthy controls.
J Neuroimaging
January 2025
Neurobiology Research Unit, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
Background And Purpose: This study aims to investigate the longitudinal changes in translocator protein (TSPO) following stroke in different brain regions and potential associations with chronic brain infarction.
Methods: Twelve patients underwent SPECT using the TSPO tracer 6-Chloro-2-(4'-123I-Iodophenyl)-3-(N,N-Diethyl)-Imidazo[1,2-a]Pyridine-3-Acetamide, as well as structural MRI, at 10, 41, and 128 days (median) after ischemic infarction in the middle cerebral artery. TSPO expression was measured in lesional (MRI lesion and SPECT lesion), connected (pons and ipsilesional thalamus), and nonconnected (ipsilesional cerebellum and contralesional occipital cortex) regions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!