Recent advances have shed light on the molecular heterogeneity of small cell lung cancer (SCLC), yet the spatial organizations and cellular interactions in tumor immune microenvironment remain to be elucidated. Here, we employ co-detection by indexing (CODEX) and multi-omics profiling to delineate the spatial landscape for 165 SCLC patients, generating 267 high-dimensional images encompassing over 9.3 million cells. Integrating CODEX and genomic data reveals a multi-positive tumor cell neighborhood within ASCL1 (SCLC-A) subtype, characterized by high SLFN11 expression and associated with poor prognosis. We further develop a cell colony detection algorithm (ColonyMap) and reveal a spatially assembled immune niche consisting of antitumoral macrophages, CD8 T cells and natural killer T cells (MT) which highly correlates with superior survival and predicts improving immunotherapy response in an independent cohort. This study serves as a valuable resource to study SCLC spatial heterogeneity and offers insights into potential patient stratification and personalized treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccell.2025.01.012DOI Listing

Publication Analysis

Top Keywords

small cell
8
cell lung
8
lung cancer
8
sclc spatial
8
integrative spatial
4
spatial analysis
4
analysis reveals
4
reveals tumor
4
tumor heterogeneity
4
heterogeneity immune
4

Similar Publications

Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve damage, often associated with elevated intraocular pressure (IOP). Retinoid X receptors (RXRs) are ligand-activated transcription factors crucial for neuroprotection, as they regulate gene expression to promote neuronal survival via several biochemical networks and reduce neuroinflammation. This study investigated the therapeutic potential of 9-cis-13,14-dihydroretinoic acid (9CDHRA), an endogenous retinoid RXR agonist, in mitigating RGC degeneration in a high-IOP-induced experimental model of glaucoma.

View Article and Find Full Text PDF

Peripheral nerve injuries (PNIs) often lead to semi or complete loss of motor, sensory and autonomic functions. Although autografts are still the best option for PNI repair, their use is restricted due to the morbidity and availability of donor nerves. Because electrospun scaffolds may replicate the structure of native extracellular matrix (ECM), they provide a viable alternative.

View Article and Find Full Text PDF

Proton insertion mechanism with fast reaction kinetics is attracting more and more attention for high-rate and durable aqueous Zn─MnO batteries. However, hydrated Zn insertion reaction accompanied with Jahn-Teller effect and Mn disproportionation generally leads to sluggish rate capability and irreversible structure transformation. Here, carboxyl-carbon nanotubes supported α-MnO nanoarrays (C─MnO) cathode is successfully fabricated by a convent grinding process for high-performance Zn batteries.

View Article and Find Full Text PDF

Heteroatom Introduction and Electrochemical Reconstruction on Heterostructured Co-Based Electrocatalysts for Hydrogenation of Quinolines.

Small

March 2025

Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

Electrocatalytic hydrogenation (ECH) of quinoline provides an eco-friendly and prospective route to achieve the highly value-added generation of 1,2,3,4-tetrahydroquinoline (THQ). Co element has been proven to be the efficient catalytic site for ECH of quinoline, but the rational regulation of the electronic structure of active Co site to improve the activity is still a challenge. Herein, the hierarchical core-shell structure consisting of NiCo-MOF nanosheets encapsulated Cu(OH) nanorods (Cu(OH)@CoNi-MOF) is constructed.

View Article and Find Full Text PDF

Metal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) due to their tunable bandgaps, which allow the active layers to be optimized for artificial light sources. However, significant non-radiative carrier recombination under low-light conditions has limited the full potential of perovskite-based IPVs. To address this challenge, an integration of perylene diimide (PDI)-based sulfobetaines as cathode interlayers (CILs) is proposed and the impact of varying alkyl chain length (from 1,2-ethylene to 1,5-pentylene) between the cationic and the anionic moieties is examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!