N-methyl-D-aspartate (NMDA)-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis. Using subtype-selective pharmacological and genetic tools, we find that structural plasticity is dependent on ligand binding to GluN2B-containing NMDA receptors (NMDARs) and signaling via the GluN2B carboxy-terminal domain (CTD). Disruption of non-ionotropic signaling by replacing the GluN2B CTD with the GluN2A CTD leads to an increase in spine density, dysregulated basal protein synthesis, exaggerated long-term depression mediated by G-protein-coupled metabotropic glutamate receptors (mGluR-LTD), and epileptiform activity reminiscent of phenotypes observed in the Fmr1 knockout (KO) model of fragile X syndrome. By crossing the Fmr1 KO mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for the treatment of fragile X and related causes of intellectual disability and autism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2025.115311 | DOI Listing |
Cell Rep
February 2025
The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address:
N-methyl-D-aspartate (NMDA)-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis. Using subtype-selective pharmacological and genetic tools, we find that structural plasticity is dependent on ligand binding to GluN2B-containing NMDA receptors (NMDARs) and signaling via the GluN2B carboxy-terminal domain (CTD). Disruption of non-ionotropic signaling by replacing the GluN2B CTD with the GluN2A CTD leads to an increase in spine density, dysregulated basal protein synthesis, exaggerated long-term depression mediated by G-protein-coupled metabotropic glutamate receptors (mGluR-LTD), and epileptiform activity reminiscent of phenotypes observed in the Fmr1 knockout (KO) model of fragile X syndrome.
View Article and Find Full Text PDFBiomol Ther (Seoul)
March 2025
Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
The N-methyl-D-aspartate receptor (NMDA-R) subunit GluN2B is abundantly expressed in brain regions critical for synaptic plasticity and cognitive processes. This study investigated the structure-activity relationships (SAR) of NMDA-R ligands using GluN2B as a molecular target. Thirty potential NMDA-R antagonists were categorized into two structural classes: 1-(1-phenylcyclohexyl) amines (series A) and α-amino-2-phenylcyclohexanone derivatives (series B).
View Article and Find Full Text PDFIt is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.
View Article and Find Full Text PDFJ Physiol
December 2024
Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
In recent years, evidence supporting non-ionotropic signalling by the NMDA receptor (niNMDAR) has emerged, including roles in long-term depression (LTD). Here, we investigated whether niNMDAR-pannexin-1 (Panx1) contributes to LTD at the CA3-CA1 hippocampal synapse. Using whole-cell, patch clamp electrophysiology in rat hippocampal slices, we show that a low-frequency stimulation (3 Hz) of the Schaffer collaterals produces LTD that is blocked by continuous but not transient application of the NMDAR competitive antagonist, MK-801.
View Article and Find Full Text PDFJ Neurosci
August 2024
Center for Neuroscience, University of California, Davis, California 95618
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!