The effect of ultrasound (US) on persulfate (PS) activation was investigated to determine whether acoustic cavitation can effectively induce PS activation for bisphenol A (BPA) degradation at 20, 28, and 300 kHz under various temperature conditions. The optimal liquid volume in the vessel was geometrically determined to be 400, 900, and 420 mL at 20, 28, and 300 kHz, respectively, using KI dosimetry and sonochemiluminescence image analysis. The pseudo-1st-order reaction kinetic constants in the only PS, only US, and US/PS processes at 20, 28, and 300 kHz were obtained under 5-10 ℃, 15-20 ℃, 25-30 ℃, 45-50 ℃, 55-60 ℃, and no temperature control conditions. No notable BPA degradation occurred at 5-10 ℃, 15-20 ℃, and 25-30 ℃ in the only PS processes for all frequencies. The highest sonochemical BPA degradation was obtained at 300 kHz, and much lower BPA degradation was observed at 45-50 ℃ and 55-60 ℃ for all frequencies in the only US processes. No notable enhancement of BPA degradation was observed at 5-10 ℃, 15-20 ℃, and 25-30 ℃ in the US/PS processes compared to the only US processes for all frequencies. At 20 kHz and temperatures between 55 and 60 ℃, the highest BPA degradation was obtained, with a synergistic effect of 171 %. However, the enhancement might be due to the instant or local temperature increase, and not due to acoustic cavitation. No notable PS activation by US irradiation was observed in the US/PS processes in this study. The profiles of the generated sulfate ion concentrations in the US/PS processes confirmed this. Some previous studies found high synergistic effects, whereas others have found low or no synergistic effects in US/PS processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891710 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2025.107281 | DOI Listing |
Water Environ Res
March 2025
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, P. R. China.
Persulfate-based advanced oxidation processes (PS-AOPs) catalyzed by carbon-based catalysts are promising for removing organic pollutants via radical/non-radical pathways. However, the activation efficiency of peroxymonosulfate (PMS) or peroxydisulfate (PDS) usage and the reaction mechanism remain insufficiently understood. In this study, the effects of PMS/PDS dosage on the degradation of bisphenol A (BPA, 10 mg/L) were evaluated using N-doped biochar (N-BC, 0.
View Article and Find Full Text PDFBioresour Technol
March 2025
Chengdu Medical College, Chengdu 610500, China. Electronic address:
Improving degradation efficiency of activated sludge towards bisphenol A (BPA) is related to water safety. A hydrogel immobilized bacteria@metal-organic-frameworks (im-SQ-2@MOFs) was synthesized previously, which was a composite formed by metal organic frameworks adhering to BPA degrading bacteria. Accordingly, this study added im-SQ-2@MOFs as enhancer to augment the BPA degradation ability of activated sludge.
View Article and Find Full Text PDFFood Chem Toxicol
March 2025
Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China. Electronic address:
The elucidation of the causal relationship between bisphenol-A (BPA) exposure and hepatoxic outcomes is challenging because of the complexity in both the BPA-derived metabolites formed in the liver and the associated endogenous molecular responses. We performed parallel metabolism experiments with BPA to characterize the BPA sulfate formation and the associated alterations in the metabolome level in HepG2 cells using mass spectrometry-based metabolome wide association study. Briefly, HepG2 cells were exposed for 8 or 24 h to 1 or 10 μM BPA in DMSO or DMSO alone.
View Article and Find Full Text PDFJ Environ Manage
March 2025
School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China. Electronic address:
The robust redox cycle of the catalytic center is essential for enhancing sustainable water purification in Fenton-like catalysis. However, the unequal of electron donation and acceptance, especially slow reductive half-reactions, often limit the process. Herein, we developed a photocatalytic heterojunction by integrating cuprous oxide (CuO) with hexagonal boron nitride (h-BN).
View Article and Find Full Text PDFWater Res
March 2025
School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
Emerging contaminants (ECs) are characterized by their widespread environmental distribution and low concentrations, posing significant challenges for their effective removal from source wastewater. To better deal with the problems associated with ECs, we developed a robust Fe-Mn bimetallic catalyst supported on N-doped biochar (FM@NBC-8) for peroxymonosulfate (PMS)-mediated advanced oxidation system, in which bisphenol A (BPA) was investigated as a typical EC. Particularly, complete degradation of BPA in the FM@NBC-8/PMS system was achieved within 5 min, accompanying with a high TOC removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!