Currently, producing NPSH after HPV infection of cells has been confirmed. These NPSH-containing substances accumulate around the urethral opening and are subsequently washed out with urine. Therefore, indirect detection of HPV infection by assessing NPSH levels in urine is feasible, but it has not been reported in detail so far. Here, an assay using phosphotungstic acid to oxidise and produce colour changes by NPSH in urine was developed. This assay enabled the rapid, non-invasive identification of HPV infection by detecting the metabolic byproduct NPSH produced by HPV-infected cells. Employing a smartphone-based device, developed using an ambient light sensor, reduces the cost and simplifies the operation associated with the colourimetric assay. The colourimetric assay was used to detect L-cysteine and L-ascorbic acid standard substance (as NPSH mimics), the limited of detection were 0.12 mM and 31.25 μM, respectively, with high reproducibility and stability. When this colourimetric assay was used to evaluate urine samples from individuals suspected of HPV infection, along with other at-home self-screening methods for HPV nucleic acid detection in urine, showed comparable sensitivity and specificity. Compared with nucleic acid detection in urine, this colourimetric assay is cost-effective, user-friendly, amenable to self-sampling, and enables testing at one's convenience and location of choice, which is more suitable for home self-testing or population self-screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2025.125923 | DOI Listing |
ACS Synth Biol
March 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Cell-free synthetic biology biosensors have potential as effective diagnostic technologies for the detection of chemical compounds, such as toxins and human health biomarkers. They have several advantages over conventional laboratory-based diagnostic approaches, including the ability to be assembled, freeze-dried, distributed, and then used at the point of need. This makes them an attractive platform for cheap and rapid chemical detection across the globe.
View Article and Find Full Text PDFBiotechnol Prog
March 2025
Centre for Synthetic Biology, Imperial College London, London, UK.
The quality control of RNA has become increasingly crucial with the rise of mRNA-based vaccines and therapeutics. However, conventional methods such as LC-MS often require specialized equipment and expertise, limiting their applicability to high throughput experiments. Here, we optimize a previously characterized RNA integrity biosensor, that provides a simple colorimetric output, using Design of Experiments (DoE).
View Article and Find Full Text PDFJ Diabetes Complications
March 2025
Health Sciences Post Graduation, Santo Amaro University, Sao Paulo, Brazil. Electronic address:
Aims: To investigate the effects of non-surgical periodontal treatment on the levels of cytokines, sIgA, antimicrobial peptides, oxidative and antioxidative agents in comparison between patients with and without diabetes.
Methods: A case-control study that included patients (n = 45) with periodontitis who have or do not have diabetes. Cytokine concentrations in crevicular gingival fluid (GCF) and saliva were determined using LUMINEX and ELISA assays, respectively.
Food Chem
March 2025
Institute of Hybrid Materials College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
Nanozymes, as superior alternatives to natural enzymes, frequently employ the inhibition effect in turn-off sensors for analyte detection. However, limited attention has been paid to the inhibition mechanisms between analytes and nanozymes, limiting advancements in nanozyme-based sensing. Benefiting from the synergistic effects between three-dimensional network structure of aerogel and ligand effect triggered electronic regulation, PtBi aerogel nanozymes (PtBi ANs) exhibit superior peroxidase-like activity (293.
View Article and Find Full Text PDFAnal Chem
March 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
(), a prevalent foodborne bacterium, necessitates creating sensitive and rapid detection methods for food safety, with lateral flow immunoassays (LFIAs) using nanomaterials as signal tracers being particularly effective. Enhancements in performance and sensitivity are not restricted to the material alone, we propose an "integrated stacked" concept, which combines amorphous active sites, hollow morphology for enhanced reflection, and symmetric structure for strong absorption resonance. This approach leads to significant photothermal enhancement (η = 60.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!