Cell stress adaptation plays a key role in normal development and in various diseases including cancer. Caspases are activated in response to cell stress, and growing evidence supports their function in non-apoptotic cellular processes. A role for effector caspases in promoting stress-induced cytoprotective autophagy was demonstrated in Drosophila, but has not been explored in the context of human cells. We found a functionally conserved role for effector caspase 3 (CASP3) and caspase 7 (CASP7) in promoting starvation or proteasome inhibition-induced cytoprotective autophagy in human breast cancer cells. The loss of CASP3 and CASP7 resulted in an increase in PARP1 cleavage, reduction in LC3B and ATG7 transcript levels, and a reduction in H2AX phosphorylation, consistent with a block in autophagy and DNA damage-induced stress response pathways. Surprisingly, in non-lethal cell stress conditions, CASP7 underwent non-canonical processing at two calpain cleavage sites flanking a PARP1 exosite, resulting in stable CASP7-p29/p30 fragments. Expression of CASP7-p29/p30 fragment(s) could rescue H2AX phosphorylation in the CASP3 and CASP7 double knockout background. Strikingly, yet consistent with these phenotypes, the loss of CASP3 and CASP7 exhibited synthetic lethality with BRCA1 loss. These findings support a role for human caspases in stress adaptation through PARP1 modulation and reveal new therapeutic avenues for investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882052 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3003034 | DOI Listing |
Int Immunopharmacol
March 2025
Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China. Electronic address:
Purpose: Spontaneous abortion (SA) remains a clinical challenge in early pregnancy. It has been reported that endoplasmic reticulum stress (ERS) is implicated in pregnancy-related complications. However, the precise mechanistic role of ERS in SA pathogenesis remains elusive.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Xi'an, Shaanxi, 710061, China.
TNF receptor-associated factor 3 interacting protein 3 (TRAF3IP3/T3JAM) exhibits dual roles in cancer progression. While upregulated in most malignancies and critical for immune regulation. However, the specific effects and molecular mechanisms of TRAF3IP3 on the progression of lung adenocarcinoma (LUAD) remains poorly understood.
View Article and Find Full Text PDFApoptosis
March 2025
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, TN, India.
Cell death is a crucial mechanism through which cells respond to damage and stress, thereby maintaining homeostasis. Cell death pathways include both caspase-dependent and caspase-independent mechanisms, such as apoptosis, necrosis, autophagy, and ferroptosis. The recent discovery of oxeiptosis identifies a unique form of ROS-mediated, caspase-independent cell death with apoptotic-like features.
View Article and Find Full Text PDFJ Transl Med
March 2025
School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
Lipopolysaccharide (LPS) is known to induce cell injury and mitochondrial dysfunction, which are pivotal in neuroinflammation and related disorders. Recent studies have demonstrated the potential of nicotinamide mononucleotide (NMN) and poly(ADP-ribose) polymerase-1 (PARP1) inhibitors to enhance mitochondrial function. However, the underlying mechanisms have not been fully elucidated.
View Article and Find Full Text PDFActa Neuropathol Commun
February 2025
Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
The enzyme pair PINK1 and PRKN together orchestrates a cytoprotective mitophagy pathway that selectively tags damaged mitochondria with phospho-serine 65 ubiquitin (pS65-Ub) and directs them for autophagic-lysosomal degradation (mitophagy). We previously demonstrated a significant accumulation of pS65-Ub signals in autopsy brains of sporadic Lewy body disease and Alzheimer's disease cases, which strongly correlated with early tau pathology. In this study, we extended our analysis to a series of pathologically confirmed cases of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) harboring different pathogenic mutations in MAPT, the gene encoding tau.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!