Ectomycorrhizae (ECM) and their hyphae may account for up to one-third of forest productivity, but we know little about their patterns of decomposition and recruitment. ECM decomposition rates are governed in part by the identity of the symbiont, while the species that colonize new fine roots are determined by a number of abiotic and biotic filters, including the developmental stage of the root system and hyphal network. Sections of forest floor humus were excised from mature pine stands (severing all roots), replaced and randomly sampled over time. Decomposing ECM and ECM forming on newly growing roots were tracked over 15 months by ITS sequencing. ECM were no longer observed on original roots 13 months post-disturbance, while ECM appeared on new roots after 10 months. Individually, the dominant ECM fell into three categories. 1) Cenococcum geophilum decomposed and recruited slowly, 2) Suillus spraguei and Russula spp. decomposed rapidly but exhibited minimal recruitment during the experiment, and 3) Clavulina coralloides and Lactifluus/Lactarius spp. degraded rapidly but also recruited rapidly onto new roots. Our results indicate that rates of ECM decomposition vary among fungal symbionts, and that root severing appears to shift the ECM community to a slightly earlier successional stage. The lack of recruitment of ECM formed by truly early-stage species is likely due to the low level of soil disturbance, which should be advantageous in the context of forest regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00572-025-01190-yDOI Listing

Publication Analysis

Top Keywords

ecm
10
recruitment ecm
8
ecm decomposition
8
roots
6
dynamics pine
4
pine ectomycorrhizae
4
ectomycorrhizae root
4
root disturbance
4
disturbance ectomycorrhizae
4
ectomycorrhizae ecm
4

Similar Publications

Peripheral nerve injuries (PNIs) often lead to semi or complete loss of motor, sensory and autonomic functions. Although autografts are still the best option for PNI repair, their use is restricted due to the morbidity and availability of donor nerves. Because electrospun scaffolds may replicate the structure of native extracellular matrix (ECM), they provide a viable alternative.

View Article and Find Full Text PDF

Murine Aortic Valve Cell Heterogeneity at Birth.

Arterioscler Thromb Vasc Biol

March 2025

Department of Pediatrics, Division of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee (T.B., J.R.K., A.J.K., J.L.).

Background: Heart valve function requires a highly organized ECM (extracellular matrix) network that provides the necessary biomechanical properties needed to withstand pressure changes during each cardiac cycle. Lay down of the valve ECM begins during embryogenesis and continues throughout postnatal stages when it is remodeled into stratified layers and arranged according to blood flow. Alterations in this process can lead to dysfunction and, if left untreated, heart failure.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterised by excessive deposition of extracellular matrix (ECM), resulting in high mortality rates. In this study, we provide evidence that ADAM17/PTGS2 plays a crucial role in inducing ferroptosis in fibroblasts, promoting PF. Initially, an assessment was made of ADAM17 protein levels in patients diagnosed with connective tissue diseases-interstitial lung diseases (CTD-ILD), using ELISA assays.

View Article and Find Full Text PDF

Extracellular Z-DNA Enhances Cariogenicity of Biofilm.

J Dent Res

March 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Extracellular DNA (eDNA) is one of the core components of the extracellular matrix (ECM) in biofilms and provides attachment sites for microbes and other ECM components. However, little is known about the functions and underlying mechanisms of eDNA in the cariogenicity of dental plaque biofilms. A recent study demonstrated that conformational diversity of eDNA exists in biofilms, and the transition of eDNA from right-handed (B-DNA) to left-handed (Z-DNA) is associated with the structural stability and pathogenicity of biofilms.

View Article and Find Full Text PDF

Novel De Novo Variant in an Early-Onset Ovarian Cancer Reveals a Unique Tumor Evolution Pathway.

Int J Mol Sci

March 2025

Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy.

Ovarian cancer (OC) is a highly heterogeneous malignancy, often characterized by complex genomic alterations that drive tumor progression and therapy resistance. In this paper, we report a novel de novo germline variant NM_000059.3:c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!