Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A considerable effort has been expended over the years to tune the properties of ionic liquids (ILs) by designing cations, anions, and pendant groups on the ions. A simple and effective approach to altering the properties of ILs is formulating IL-IL mixtures. However, the measurements and properties of such mixtures lag considerably behind those of pure ILs. From a molecular simulation point of view, binary IL mixtures have been investigated using charge distributions of pure ILs, which implicitly assumes that the ions of different polarizability do not influence the local electronic environment due to changing concentrations. To understand this effect, molecular dynamics (MD) simulations were conducted for a series of IL-IL mixtures containing the common cation 1-ethyl-3-methylimidazolium [Cmim] varying the composition of various combinations of anions (tetrafluoroborate [BF] and dicyanamide [DCA], [BF] and bis(trifluoromethanesulfonyl)imide [NTF], [BF] and trifluoromethanesulfonate [TFO], and [TFO] and [NTF]). The effect of changing the electronic environment was evaluated by deriving partial charges using density functional theory (DFT) calculations in the condensed phase. It was observed that the overall charge on the cation and anion was a function of the cation-anion pairings for pure ILs. Moreover, the cation charge was found to vary linearly with anionic concentrations. Improved agreement of predicted density and ionic conductivity with experimental values was found for binary IL mixtures with this approach, in comparison to that when a fixed charge model is employed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891901 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.4c08275 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!