Polar topological structures have emerged as a frontier in research due to their significant potential in nanoscale electronic devices. The periodic and ordered arrangement, as well as the dynamic control mechanisms, are essential for their practical applications. Here, we present theoretical phase-field simulations that reveal the periodic and ordered arrangement of skyrmions and in-plane vortices within (SrTiO)/(PbTiO)/(SrTiO) checkerboard-patterned wrinkled trilayer films. Each skyrmion wall exhibits a stable negative capacitance that significantly enhances the effective dielectric permittivity. The negative capacitance results from polarization reversal at the domain walls under small electric field perturbations, closely linked to the depolarization field. The direction of the external electric field can determine the location of the negative capacitance region, which is not strictly confined to the original domain walls but exhibits a shift. These topologically protected structures undergo reversible phase transitions from skyrmion and vortex states to a uniform ferroelectric state under the influence of electric fields and strain, accompanied by highly tunable permittivity. This interplay between topological structures and dielectric characteristics in flexible ferroelectric films offers the opportunity to simultaneously manipulate both topological and dielectric properties through external stimuli, thereby broadening the design possibilities for flexible electronic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c16350 | DOI Listing |
Phys Chem Chem Phys
March 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Ion encapsulation by solvent molecules significantly impacts ion transport and the adsorption mechanism in energy storage devices. The aim of this investigation is to analyse the adsorption mechanisms associated with the solvation shell of lithium ions near the electrode/electrolyte interface during the charging process. Simulations using molecular dynamics (MD) are conducted for LiPF salt in PC solvent confined in between two flat carbon electrodes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou 350108, China.
3D-Printed quasi-solid-state microsupercapacitors (MSCs) present immense potential as next-generation miniature energy storage devices, offering superior power density, excellent flexibility, and feasible on-chip integration. However, the challenges posed by formulating 3D printing inks with high-performance and ensuring efficient ionic transport in thick electrodes hinder the development of advanced MSCs with high areal energy density. Herein, we report 3D-printed ultrahigh-energy-density asymmetric MSCs with latticed electrodes, fabricated using Ni-Co-S/Co(OH)/carbon nanotubes/reduced graphene oxide (Ni-Co-S/Co(OH)/CNTs/rGO) positive electrode ink and activated carbon (AC)/CNTs negative electrode ink.
View Article and Find Full Text PDFLangmuir
March 2025
Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China.
In this work, a series of Ni/Co-MOFs with high specific capacitances were synthesized as anode materials using a one-step hydrothermal reaction method. NaOH in different amounts (3, 4, 5, and 6 mmol) was added during the synthesis to tune the pore structure of Ni/Co-MOFs. It was found that the Ni/Co-MOF-3 with a NaOH amount of 5 mmol exhibits the largest specific surface area and pore volume, which provides more active sites for the electrochemical reaction and facilitates ion diffusion at the interface of the electrolyte solution/active material, thus increasing the capacitance of the electrode material.
View Article and Find Full Text PDFChem Commun (Camb)
March 2025
Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
Capitalizing on the nonvolatile, nanoscale controllable polarization, ferroelectric perovskite oxides can be integrated with various functional materials for designing emergent phenomena enabled by charge, lattice, and polar symmetry mediated interfacial coupling, as well as for constructing novel energy-efficient electronics and nanophotonics with programmable functionalities. When prepared in thin film or membrane forms, the ferroelectric instability of these materials is highly susceptible to the interfacial electrostatic and mechanical boundary conditions, resulting in tunable polarization fields and Curie temperatures and domain formation. This review focuses on two types of ferroelectric oxide-based heterostructures: the epitaxial perovskite oxide heterostructures and the ferroelectric oxides interfaced with two-dimensional van der Waals materials.
View Article and Find Full Text PDFPlant Physiol Biochem
February 2025
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, Sichuan, China. Electronic address:
Plant fine roots play a key role in water and nutrient uptake, yet, are not studied as much as leaves. Fine roots traits, particularly the pressure-volume (P-V) curve and anatomical-structural characteristics, are important in determining plant adaptation to changing environment. However, limited information regarding the variation of these traits in response to soil rock fragment content (RFC), especially in drought-prone rocky mountain areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!