β‑sitosterol (SIT) has anti‑inflammatory, anti‑tumor and anti‑fibrotic effects. However, the precise mechanisms underlying its efficacy in keloid treatment remain elusive. The present study aimed to elucidate the therapeutic effect of SIT on keloids. The active components of , target molecules of these components and disease‑associated target molecules were identified and retrieved from various databases. Molecular docking was employed to evaluate the binding affinity of the active compounds for key targets. Cell viability and proliferation were evaluated via CCK‑8 and EdU assays, while cell migration capacity was assessed via wound healing assays and cell migration and invasion abilities were determined via Transwell assays. A rescue study involving YS‑49 was conducted. Western blot analysis was performed to assess the expression levels of proteins associated with EMT and proteins involved in the PI3K/AKT signaling pathway. A subcutaneous keloid fibroproliferative model was established in nude mice and immunohistochemical staining was performed on tissue sections. By intersecting the keloid targets, 29 targets were identified, with 10 core targets revealed by protein-protein interaction analysis. Molecular docking revealed a robust binding affinity between SIT and PTEN. In addition to inhibiting cell viability, invasion and migration, SIT significantly decreased the levels of phosphorylated (p‑)PI3K and p‑AKT, downregulated the protein expression of Vimentin and Snail proteins and increased the protein expression of Zonula Occludens‑1 and E‑cadherin. YS‑49 reversed the inhibitory effect of SIT on keloid in SIT‑treated cells. experiments demonstrated that SIT suppressed the growth of a keloid model in nude mice and increased PTEN expression. The present study provided the first evidence that SIT inhibits keloid proliferation, migration and invasion by modulating the PTEN/PI3K/AKT signaling pathway, suggesting its potential as a novel therapeutic approach for keloid treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868730 | PMC |
http://dx.doi.org/10.3892/mmr.2025.13460 | DOI Listing |
Food Addit Contam Part A Chem Anal Control Expo Risk Assess
March 2025
Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt.
Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated.
View Article and Find Full Text PDFSci Adv
March 2025
School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China.
The emergence and rapid spread of multidrug-resistant strains pose a great challenge to the quality and safety of agricultural products and the efficient use of pesticides. Previously unidentified fungicides and targets are urgently needed to combat -associated infections as alternative therapeutic options. In this study, the promising compound Z24 demonstrated efficacy against all tested plant pathogenic fungi.
View Article and Find Full Text PDFMed Oncol
March 2025
Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India.
Prostate cancer has garnered much importance in recent years due to its rising incidence and mortality among men worldwide. The ineffectiveness of existing therapies and adverse events associated with conventional treatment have led patients to turn towards traditional medicine for the management of prostate cancer. Cinnamomum zeylanicum bark essential oil (CZEO) possesses promising anticancer properties, yet the exact mechanism of action of CZEO for the management of prostate cancer remains unclear.
View Article and Find Full Text PDFJ Mol Model
March 2025
Faculty of Science, Engineering and Agriculture, University of Venda, University Road, Thohoyandou, 0950, South Africa.
Context: Malaria and cancer tend to become drug-resistant a few years after a drug is introduced into clinical use. This prompts the search for new molecular structures that are sufficiently different from the drugs for which resistance has developed. The present work considers eight selected acylphloroglucinols (ACPLs) with proven antimalarial and/or anticancer activities.
View Article and Find Full Text PDFFood Funct
March 2025
Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.
Umami and bitter peptides generated by microbial metabolism are essential to the taste of low-salt fish sauce. However, the uncertain taste mechanisms of peptides hinder the efficient identification of high-intensity taste peptides in fish sauce. Our study investigated the taste mechanisms of umami or bitter peptides from low-salt fish sauce fermented with .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!