To infinity and beyond: recent progress, bottlenecks, and potential of clonal seeds by apomixis.

Plant J

Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.

Published: February 2025

Apomixis - clonal seed production in plants - is a rare yet phylogenetically widespread trait that has recurrently evolved in plants to fix hybrid genotypes over generations. Apomixis is absent from major crop species and has been seen as a holy grail of plant breeding due to its potential to propagate hybrid vigor in perpetuity. Here we exhaustively review recent progress, bottlenecks, and potential in the individual components of gametophytic apomixis (avoidance of meiosis, skipping fertilization by parthenogenesis, autonomous endosperm development), and sporophytic apomixis. The Mitosis instead of Meiosis system has now been successfully set up in three species (Arabidopsis, rice, and tomato), yet significant hurdles remain for universal bioengineering of clonal gametes. Parthenogenesis has been engineered in even more species, yet incomplete penetrance still remains an issue; we discuss the choice of parthenogenesis genes (BABY BOOM, PARTHENOGENESIS, WUSCHEL) and also how to drive egg cell-specific expression. The identification of pathways to engineer autonomous endosperm development would allow fully autonomous seed production, yet here significant challenges remain. The recent achievements in the engineering of synthetic apomixis in rice at high penetrance show great potential and the remaining obstacles toward implementation in this crop are addressed. Overall, the recent practical examples of synthetic apomixis suggest the field is flourishing and implementation in agricultural systems could soon take place.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843595PMC
http://dx.doi.org/10.1111/tpj.70054DOI Listing

Publication Analysis

Top Keywords

progress bottlenecks
8
bottlenecks potential
8
seed production
8
autonomous endosperm
8
endosperm development
8
synthetic apomixis
8
apomixis
7
infinity progress
4
potential
4
potential clonal
4

Similar Publications

Thoracic aortic aneurysm and dissection (TAAD) significantly impact cardiovascular morbidity and mortality. A large subset of TAAD cases, particularly those with an earlier onset, is linked to heritable genetic defects. Despite progress in characterizing genes associated with both syndromic and non-syndromic heritable TAAD, the causative gene remains unknown in most cases.

View Article and Find Full Text PDF

Mammalian inner ear sensory hair cells are highly sensitive to environmental stress and do not regenerate, making hearing loss progressive and permanent. The paucity and extreme inaccessibility of these cells hinder the development of regenerative and otoprotective strategies, Direct lineage reprogramming to generate large quantities of hair cell-like cells in vitro offers a promising approach to overcome these experimental bottlenecks. Previously, we identified four transcription factors- , , , and (SAPG)-capable of converting mouse embryonic fibroblasts, adult tail tip fibroblasts, and postnatal mouse supporting cells into induced hair cell-like cells through retroviral or lentiviral transduction (Menendez .

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks among the most prevalent malignant neoplasms globally. A growing body of evidence underscores the pivotal roles of genetic alterations and dysregulated epigenetic modifications in the pathogenesis of CRC. In recent years, the reprogramming of tumor cell metabolism has been increasingly acknowledged as a hallmark of cancer.

View Article and Find Full Text PDF

There has been incremental progress in moving BCI out of the laboratory environment and into the homes of those who would benefit most, especially children living with severe physical disabilities. Practical issues, such as available computational resources and long calibration times, have slowed down the adoption of such systems. To develop an efficient and scalable machine learning framework consistent with early approaches that facilitate at-home BCI use, this study provides valuable insights into measuring the behavioral characteristics of a Raspberry Pi 4 (RPi4) during the operation and execution of standard BCI processes, including the training and evaluation of classifier models.

View Article and Find Full Text PDF

Despite the vast number of publications reporting seizures and the reliance of the field on accurate seizure detection, there is a lack of open-source software tools in the scientific community for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient and can be error prone and heavily biased. Here we have developed - SeizyML - an open-source software that combines machine learning models with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!