Artificial intelligence (AI) is revolutionizing healthcare by improving diagnostic accuracy, streamlining treatment protocols, and augmenting patient care, especially in the management of multimorbidity. This review assesses the applications of AI in forecasting and controlling problems in multimorbid patients, emphasizing predictive analytics, real-time data integration, and enhancements in diagnostics. Utilizing extensive datasets from electronic health records and medical imaging, AI models facilitate early complication prediction and prompt therapies in diseases such as cancer, cardiovascular disorders, and diabetes. Notable developments encompass AI systems for the diagnosis of lung and breast cancer, markedly decreasing false positives and minimizing superfluous follow-ups. A comprehensive literature search was performed via PubMed and Google Scholar, applying Boolean logic with keywords such as "artificial intelligence", "multimorbidity", "predictive analytics", "machine learning", and "diagnosis". Articles published in English from January 2010 to December 2024, encompassing original research, systematic reviews, and meta-analyses regarding the use of AI in managing multimorbidity and healthcare decision-making, were included. Studies not pertinent to therapeutic applications, devoid of outcome measurements, or restricted to editorials were discarded. This review emphasizes AI's capacity to augment diagnostic precision and boost clinical results while also identifying substantial hurdles, including data bias, ethical issues, and the necessity for rigorous validation and longitudinal research to guarantee sustainable integration in clinical environments. This review's limitations encompass the possible exclusion of pertinent studies due to language and publication year constraints, as well as the disregard for grey literature, potentially constraining the comprehensiveness of the findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840652 | PMC |
http://dx.doi.org/10.7759/cureus.77758 | DOI Listing |
Cancer Biol Ther
December 2025
Department of Surgery, Hamad Medical Corporation, Doha, Qatar.
Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers.
View Article and Find Full Text PDFJMIR Med Inform
March 2025
Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No.119 Nansihuanxi Road, Fengtai District, Beijing, 100070, China, 86 17611757717.
Background: Publicly accessible critical care-related databases contain enormous clinical data, but their utilization often requires advanced programming skills. The growing complexity of large databases and unstructured data presents challenges for clinicians who need programming or data analysis expertise to utilize these systems directly.
Objective: This study aims to simplify critical care-related database deployment and extraction via large language models.
Front Immunol
March 2025
Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
Background: Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment have been associated with better prognostic outcomes.
View Article and Find Full Text PDFR Soc Open Sci
March 2025
School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
The landscape of artificial intelligence (AI) research is witnessing a transformative shift with the emergence of the Kolmogorov-Arnold network (KAN), presenting a novel architectural paradigm aimed to redefine the structural foundations of AI models, which are based on multilayer perceptron (MLP). Through rigorous experimentation and evaluation, we introduce the KAN-electroencephalogram (EEG) model, a tailored design for efficient seizure detection. Our proposed network is tested and successfully generalized on three different datasets, one from the USA, one from Europe, and one from Oceania, recorded with different front-end hardware.
View Article and Find Full Text PDFNat Sci Sleep
March 2025
Department of Otorhinolaryngology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People's Republic of China.
Purpose: Due to the lack of clear screening guidelines for different populations, identify strategies for obstructive sleep apnea (OSA) in the outpatient population are unclear, a large number of potential OSA outpatients have not been identified in time. The purpose of our study was to evaluate the applicability and accuracy of artificial intelligence sleep screening in outpatients and to provide a reference for OSA screening in different populations.
Methods: A type IV wearable artificial intelligence sleep monitoring (AISM) device was used to screen adults in the sleep clinic of the Sleep Medical Center for OSA screening, and the general demographic data of the patients were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!