The enhancement of rice quality stands as a pivotal focus in crop breeding research, with spectral analysis-based non-destructive quality assessment emerging as a widely adopted tool in agriculture. A prevalent trend in this field prioritizes the assessment of effectiveness of individual spectral technologies while overlooking the influence of sample type on spectral quality testing outcomes. Thus, the present study employed Microscopic Hyperspectral Imaging, Raman, and Laser-Induced Breakdown Spectroscopy (LIBS) to acquire spectral data from paddy rice, brown rice, polished rice, and rice flour. The data were then modeled and analyzed with respect to the amylopectin and protein contents of the rice samples via regression methods. Correlation analysis revealed varying degrees of correlation, both positive and negative, among the three spectral techniques and the analytes of interest. LIBS and Raman spectroscopy demonstrated stronger correlations with the analytes compared to microscopic hyperspectral imaging. Based on the selected correlation variables, feature screening and regression modeling were conducted. The modeling results indicated that microscopic hyperspectral data modeling yielded the lowest coefficient of determination of R² = 0.2, followed by Raman data modeling result was higher than it, which was about 0.5. The modeling effect of polished rice is the best. LIBS data modeling performed best, with a coefficient of determination of 0.6. The influence of different sample types on the modeling results was less than that of Raman spectroscopy, and modeling results of grains were better. The feature matching analysis of Raman and libs spectroscopy techniques showed that there were spectral variables that could match amylopectin and protein in the features obtained by multiple modeling statistics, but some modeling variables failed to match. LIBS matched more variables than Raman. These findings provide valuable insights into the application effectiveness of different spectral techniques in detecting rice contents across diverse sample types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844132 | PMC |
http://dx.doi.org/10.1186/s13007-025-01345-0 | DOI Listing |
Label-free multiphoton microscopy is a powerful tool for investigating pristine biological specimens. This imaging modality leverages optical signals originating from the nonlinear response of native biomolecules to intense optical radiation, nonlinear signals that allow localizing and quantifying the constituents of specimens, driving applications in biology and medicine. However, since its inception over three decades ago, this approach has operated with a narrowband detection scheme, relying on narrow bandwidths from the entire spectra to derive imaging contrast.
View Article and Find Full Text PDFFoods
February 2025
Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China.
As a key component of both traditional medicine and modern healthcare, Food-Medicine Homologous Herbal Materials have attracted considerable attention in recent years. However, issues related to the quality and authenticity of medicinal materials on the market often arise, not only compromising their efficacy but also presenting potential risks to consumer health. Therefore, the establishment of accurate and efficient identification methods is crucial for ensuring the safety and quality of Food-Medicine Homologous Herbal Materials.
View Article and Find Full Text PDFPlant Methods
February 2025
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
The enhancement of rice quality stands as a pivotal focus in crop breeding research, with spectral analysis-based non-destructive quality assessment emerging as a widely adopted tool in agriculture. A prevalent trend in this field prioritizes the assessment of effectiveness of individual spectral technologies while overlooking the influence of sample type on spectral quality testing outcomes. Thus, the present study employed Microscopic Hyperspectral Imaging, Raman, and Laser-Induced Breakdown Spectroscopy (LIBS) to acquire spectral data from paddy rice, brown rice, polished rice, and rice flour.
View Article and Find Full Text PDFJ Hazard Mater
February 2025
Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China. Electronic address:
Nanoplastics (NPs) are ubiquitous environmental pollutants that have garnered considerable attention for their potential adverse health effects. In this study, male C57BL/6 J mice were orally treated with a mixture of 50-nm and 200-nm polystyrene (PS)-NPs for one week followed by measurements of their neurobehavioral performance and neuronal damage 10 months later. Notably, PS-NPs were detected in the brains of the mice by transmission electron microscopy (TEM) and a nanoscale hyperspectral microscope imaging system 10 months after the PS-NP exposure.
View Article and Find Full Text PDFPLoS One
February 2025
Laboratório de Sensoriamento Remoto Geológico, Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.
Titanium oxide is of fundamental strategic importance in the global market as it is used as a raw material by several industries, such as medical prostheses, paints, pigments, and, more recently, electronic chips. The main source of titanium oxide is ilmenite, a mineral deposited in many coastal areas of the world, including the state of Rio Grande do Sul in Southern Brazil in its central coastal plain, under specific morphodynamic conditions. Some geological targets, such as mineral oxides, show distinct thermal spectral features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!