Hepatocellular carcinoma (HCC) is one of the common malignant cancers worldwide. Although immunotherapy has improved the treatment outcome in HCC, a significant percentage of patients with advanced HCC still cannot benefit from immunotherapy. Therefore, developing new targets or combination therapeutic strategies to improve the efficacy of immunotherapy is urgently needed. A deeper understanding of the mechanisms underlying immune regulation may help in this regard. The tumor microenvironment (TME) consists of a diverse set of components modulating the efficacy of immunotherapy. Cancer-associated fibroblasts (CAFs) are critical components of the TME and can regulate both tumor and immune cells through secreted cytokines and exosomes that impact various signaling pathways in target cells. CAF-derived cytokines can also participate in extracellular matrix (ECM) remodeling, thereby impacting cancer progression and tumor responsiveness to immunotherapy among other effects. A thorough understanding of the phenotypic and functional profile dynamism of CAFs may lead the way for new treatment strategies and/or better treatment outcomes in HCC patients. In this review, we outline the biomarkers and functional heterogeneity of CAFs in HCC and elaborate on molecular mechanisms of CAFs, including anti-programmed cell death protein 1 (PD-1)/PD-ligand 1 (PD-L1) immunotherapy. We also examine current clinical implications of CAFs-related targets as potential therapeutic candidates in HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12072-025-10788-5 | DOI Listing |
Adv Healthc Mater
March 2025
Department of Ultrasound, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, P. R. China.
The abnormal tumor mechanical microenvironment due to specific cancer-associated fibroblasts (CAFs) subset and low tumor immunogenicity caused by inefficient conversion of active chemotherapeutic agents are two key obstacles that impede patients with desmoplastic tumors from achieving stable and complete immune responses. Herein, it is demonstrated that FAP-αCAFs-induced stromal stiffness accelerated tumor progression by precluding cytotoxic T lymphocytes. Subsequently, a cascade-responsive nanoprodrug capable of re-educating FAP-αCAFs and amplifying tumor immunogenicity for potentiated cancer mechanoimmunotherapy is ingeniously designed.
View Article and Find Full Text PDFFront Pharmacol
February 2025
TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Prostate cancer, the second most common cancer in men, often progresses to castration-resistant prostate cancer despite androgen deprivation therapy. Immunotherapy, revolutionary in cancer treatment, has limited efficacy in prostate cancer due to its "cold tumor" nature. Peptides, with unique advantages, offer new hope.
View Article and Find Full Text PDFMolecules
February 2025
BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea.
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine -derived compound, and evaluated its potential as a VEGFR2 inhibitor. LA selectively inhibited the proliferation of human endothelial cells EA.
View Article and Find Full Text PDFCancers (Basel)
February 2025
Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan.
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment of gastric cancer (GC). Understanding the molecular characteristics of CAFs-associated genes (CAFGs) is essential for elucidating their role in tumor progression and prognosis. This review aims to summarize the current knowledge on CAFGs, highlighting their expression patterns, prognostic significance, and potential functional mechanisms.
View Article and Find Full Text PDFBMC Cancer
March 2025
Department of Surgery, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA.
Background: Accumulating evidence has suggested that cancer progression and therapeutic response depend on both tumor epithelium (EPI) and tumor microenvironment (TME). However, the dependency of clinical outcomes on the tumor EPI vs. the TME has neither been clearly defined nor quantified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!