The ever-increasing demand in the development of host molecules for the recognition of charged species is stimulated by their fundamental roles in numerous biological and environmental processes. Here, capitalizing on the inherent amphoteric nature of anisotropically polarized tellurium or iodine atoms, we demonstrate a proof of concept in charged guest recognition, where the same neutral host structure binds both cations or anions solely through its chalcogen or halogen donor atoms. Through extensive H nuclear magnetic resonance titration experiments and computational density functional theory studies, a library of chalcogen-bonding (ChB) and halogen-bonding (XB) mechanically interlocked [2]rotaxane molecules, including seminal examples of all-ChB and mixed ChB/XB [2]rotaxanes, are shown to function as either Lewis-acidic or Lewis-basic multidentate hosts for selective halide anion and metal cation binding. Notably, the exploitation of the inherent amphoteric character of an atom for the strategic purpose of either cation or anion recognition constitutes the inception of a previously unexplored area of supramolecular host-guest chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882458 | PMC |
http://dx.doi.org/10.1038/s41557-025-01742-x | DOI Listing |
Nat Chem
March 2025
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
The ever-increasing demand in the development of host molecules for the recognition of charged species is stimulated by their fundamental roles in numerous biological and environmental processes. Here, capitalizing on the inherent amphoteric nature of anisotropically polarized tellurium or iodine atoms, we demonstrate a proof of concept in charged guest recognition, where the same neutral host structure binds both cations or anions solely through its chalcogen or halogen donor atoms. Through extensive H nuclear magnetic resonance titration experiments and computational density functional theory studies, a library of chalcogen-bonding (ChB) and halogen-bonding (XB) mechanically interlocked [2]rotaxane molecules, including seminal examples of all-ChB and mixed ChB/XB [2]rotaxanes, are shown to function as either Lewis-acidic or Lewis-basic multidentate hosts for selective halide anion and metal cation binding.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
Atomically precise open-shell graphene fragments, such as extended peri-acenes, hold significant interest for electronics and spintronics. However, their inherent high reactivity poses challenges for synthesis and application. In this study, a novel approach is introduced: the fusion of a zigzag-edged peri-tetracene with an all-armchair-edged hexa-peri-hexabenzocoronene (HBC) via two shared benzene rings to produce a stable open-shell hydrocarbon, named dibenzo-peri-heptacene (DBPH).
View Article and Find Full Text PDFAcc Chem Res
November 2024
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
J Funct Biomater
November 2023
School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA.
Bacterial infections are a common mode of failure for medical implants. This study aims to develop antibacterial polyelectrolyte multilayer (PEM) coatings that contain a plant-derived condensed tannin polymer (Tanfloc, TAN) with inherent antimicrobial activity. Tanfloc is amphoteric, and herein we show that it can be used as either a polyanion or a polycation in PEMs, thereby expanding the possibility of its use in PEM coatings.
View Article and Find Full Text PDFJ Am Chem Soc
February 2023
Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany.
Despite their inherent instability, 4 π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO-LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!