In previous tasks of glottis image segmentation, the position attention mechanism was rarely incorporated, neglecting the detailed information in glottis position detection. Aiming to improve the U-Net architecture, this study introduces the dual attention mechanism based on the squeeze and excitation (SE)-Net model. This mechanism can integrate traditional channel attention with position attention mechanisms to effectively adjust the weights of crucial features and significance of positions. Replacing the weight adjustment mechanism in SE-Net with the dual attention mechanism creates a broader perspective, enhancing the sensitivity to important features in the model. Furthermore, based on the characteristics of SE-Net, the skip-connection feature of U-Net can still be retained. The architecture proposed in this paper further replaces the convolutional layers in the U-Net encoder with the bottleneck to preserve the information on the features without significantly increasing the amount of computation. In addition, the decoder is replaced with residual blocks to reduce overfitting. The results of the experiment showed that models with retained features demonstrate better accuracy while reducing overfitting. The proposed model achieved positive results in predicting the scores on the public benchmark for automatic glottis segmentation (BAGLS) dataset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2025.104298 | DOI Listing |
Proton insertion mechanism with fast reaction kinetics is attracting more and more attention for high-rate and durable aqueous Zn─MnO batteries. However, hydrated Zn insertion reaction accompanied with Jahn-Teller effect and Mn disproportionation generally leads to sluggish rate capability and irreversible structure transformation. Here, carboxyl-carbon nanotubes supported α-MnO nanoarrays (C─MnO) cathode is successfully fabricated by a convent grinding process for high-performance Zn batteries.
View Article and Find Full Text PDFEpidemiol Psychiatr Sci
March 2025
Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
Aims: To examine the risk of perinatal mental illness, including new diagnoses and recurrent use of mental healthcare, comparing women with and without traumatic brain injury (TBI), and to identify injury-related factors associated with these outcomes among women with TBI.
Methods: We conducted a population-based cohort study in Ontario, Canada, of all obstetrical deliveries to women in 2012-2021, excluding those with mental healthcare use in the year before conception. The cohort was stratified into women with no remote mental illness history (to identify new mental illness diagnoses between conception and 365 days postpartum) and those with a remote mental illness history (to identify recurrent illnesses).
Small Methods
March 2025
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
The modern era demands multifunctional materials to support advanced technologies and tackle complex environmental issues caused by these innovations. Consequently, material hybridization has garnered significant attention as a strategy to design materials with prescribed multifunctional properties. Drawing inspiration from nature, a multi-scale material design approach is proposed to produce 3D-shaped hybrid materials by combining chaotic flows with direct ink writing (ChDIW).
View Article and Find Full Text PDFSmall
March 2025
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China.
The utilization of plant-derived exosome-like nanovesicles (ELNs) as nanocarriers for oral delivery of bioactives has garnered significant attention. However, their distinctive lipid membrane composition may result in elevated membrane permeability within the gastrointestinal environment, leading to the leakage of carried bioactives. Inspired by the concept of projectile design, Tartary buckwheat-derived ELNs (TB-ELNs) based dual-carriers are fabricated by loading chlorogenic acid (CGA) into the cores and bonding selenium nanoparticles (SeNPs) to the lipid membrane.
View Article and Find Full Text PDFSmall Methods
March 2025
School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China.
Solid polymer electrolytes (SPEs) have garnered significant attention from both academic and industrial communities due to their high safety feature and high energy density in combination with lithium(Li) metal anode. Nevertheless, their practical applications remain constrained by the relatively low room-temperature ionic conductivity and interface issues. Anion-derived cation-anion aggregates (AGGs), derived from high-concentration liquid electrolytes, promote a stable solid-electrolyte interphase layer, which have gradually propelled their application in SPEs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!