Revolutionizing pancreatic cancer treatment with CAR-T therapy.

Adv Protein Chem Struct Biol

Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India. Electronic address:

Published: February 2025

Pancreatic cancer remains one of the most lethal malignancies, with a five-year survival rate among the lowest of all cancers. This poor prognosis is largely due to the aggressive nature of the disease and its resistance to conventional treatments such as surgery, chemotherapy, and radiation therapy. Chimeric antigen receptor (CAR) T-cell therapy, a novel immunotherapeutic approach leverages the patient's own immune system to specifically target and eliminate cancer cells by genetically engineering T cells to express CARs that recognize tumor-specific antigens. While CAR-T therapy has demonstrated remarkable success in treating hematologic malignancies, its application to solid tumors like pancreatic cancer presents significant challenges. Recent advancements in CAR-T cell design, like the addition of co-stimulatory domains and dual-targeting CARs, have enhanced their efficacy against solid tumors. Additionally, strategies to modify the tumor microenvironment (TME), such as combining CAR-T therapy with immune checkpoint inhibitors and cytokine modulation, are being investigated to boost CAR-T cell activity against pancreatic cancer. Early-phase clinical trials targeting antigens such as carcinoembryonic antigen (CEA) and mesothelin (MSLN) in pancreatic cancer have yielded encouraging results, though obstacles like antigen escape and limited T-cell persistence remain significant challenges. This chapter outlines the current state of CAR-T therapy for pancreatic cancer, focusing on the emerging approaches to address these obstacles and underscore the potential of CAR-T therapy to transform the future of pancreatic cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.apcsb.2024.10.008DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
28
car-t therapy
20
cancer
8
cancer treatment
8
therapy pancreatic
8
solid tumors
8
car-t cell
8
car-t
7
therapy
7
pancreatic
6

Similar Publications

CAD manipulates tumor intrinsic DHO/UBE4B/NF-κB pathway and fuels macrophage cross-talk, promoting hepatocellular carcinoma metastasis.

Hepatology

March 2025

Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.

Background And Aims: Portal vein tumor thrombosis (PVTT), an indicator of clinical metastasis, significantly shortens hepatocellular carcinoma (HCC) patients' lifespan, and no effective treatment has been established. We aimed to illustrate mechanisms underlying PVTT formation and tumor metastasis, and identified potential targets for clinical intervention.

Approach And Results: Multi-omics data of 159 HCC patients (including 37 cases with PVTT) was analyzed to identify contributors to PVTT formation and tumor metastasis.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is a highly metastatic malignancy. More than 80% of patients with PC present with advanced-stage disease, preventing potentially curative surgery. The neuropeptide Y (NPY) system, best known for its role in controlling energy homeostasis, has also been shown to promote tumorigenesis in a range of cancer types, but its role in PC has yet to be explored.

View Article and Find Full Text PDF

Endometriosis is a chronic disorder in which endometrial-like tissue presents outside the uterus. Patients with endometriosis have been shown to exhibit aberrant immune responses within the lesion microenvironment and in circulation which contribute to the development of endometriosis. Thymic stromal lymphopoietin (TSLP) is an alarmin involved in cell proliferation and the induction of T helper 2 (Th2) inflammation in various diseases, such as asthma, atopic dermatitis, and pancreatic and breast cancer.

View Article and Find Full Text PDF

Proteasomal processing of the viral replicase ORF1 facilitates HEV-induced liver fibrosis.

Proc Natl Acad Sci U S A

March 2025

Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.

Chronic infections with hepatitis E virus (HEV), especially those of genotype 3 (G3), frequently lead to liver fibrosis and cirrhosis in patients. However, the causation and mechanism of liver fibrosis triggered by chronic HEV infection remain poorly understood. Here, we found that the viral multiple-domain replicase (ORF1) undergoes unique ubiquitin-proteasomal processing leading to formation of the EV-erived MAD ctivator (HDSA), a viral polypeptide lacking putative helicase and RNA polymerase domains.

View Article and Find Full Text PDF

Background: Hidradenitis suppurativa (HS) is a chronic, inflammatory and common skin disease. Observation studies have reported the association between HS and cancers, however no studies reported whether a causal relationship exists between HS and cancers. This study aimed to explore the causal relationship between HS and differential subtypes of cancers by conducting a bidirectional Mendelian randomization (MR) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!