Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacillus thuringiensis (Bt) is affected by ultraviolet radiation and bacterial sedimentation in pest control applications, leading to low pesticide utilization and a short duration of control. To improve Bt stability in these applications and prolong the duration of biological control, Bt LLP29 was first encapsulated using double emulsion technology, resulting in the formation of W/O/W double emulsion microcapsules with sodium lignosulfonate and chitosan as wall materials. The morphological structure and functionality of microcapsules were then systematically investigated. Notably, the survival rates of Bt bacteria and spores in the microcapsules were maintained at 22.98 % and 8.18 % after 96 h of UV irradiation, and the retention rate of insecticidal protein was increased by 41.42 % after 72 h, with high mosquito-killing activity maintained. Furthermore, the Bt microcapsules exhibited excellent suspension properties and sustained release capabilities, which enhanced the retention of Bt active ingredients in the environment of young mosquitoes and extended the duration of pest control. These studies pioneered the application of double emulsion technology and microcapsules to the encapsulation of Bt based on the functional properties of chitosan. This will pave the way for the development of multifunctional Bt preparations in agricultural applications and pest control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2025.123346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!