Recently, there has been a growing interest in using radiation to change various properties of polysaccharides. This review gives a more detailed examination of the effects of gamma radiation on polysaccharides and its association with their techno-functional and biological properties following irradiation. Gamma irradiation is a potent tool for modifying the structure and properties of polysaccharides, enhancing their functionality in food applications. This review explores the effects of gamma irradiation on polysaccharides, focusing on changes in their molecular structure, physicochemical properties, and biological activities. Gamma irradiation induces chain scission and cross-linking in polysaccharides, leading to alterations in molecular weight, solubility, and viscosity. These structural modifications often enhance antioxidants, antimicrobial, and anti-inflammatory activities, expanding their potential use in food products. Gamma-irradiated polysaccharides exhibit improved gelation, emulsification, and film-forming abilities, making them suitable for various food applications such as thickeners, stabilizers, and edible coatings. The review also discusses the safety and regulatory aspects of using gamma-irradiated polysaccharides in food products. Future research directions are proposed to optimize irradiation conditions and further explore the multifunctional benefits of these modified polysaccharides, ultimately contributing to the development of innovative, functional food products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2025.123326DOI Listing

Publication Analysis

Top Keywords

food applications
12
gamma irradiation
12
food products
12
polysaccharides
9
polysaccharides review
8
structure physicochemical
8
physicochemical properties
8
properties biological
8
biological activities
8
properties polysaccharides
8

Similar Publications

This research paper presents the characterization of an enterocin-producing MF5 isolate and the determination of the in vitro antilisterial activity of enterocin produced by this isolate, named Ent-MF5. PCR-based screening for bacteriocin biosynthetic genes revealed that MF5 harbors multiple enterocin-encoding genes ( A, B, P and X), classified as class II bacteriocins and enterocin-P of (sharing up to 99% similarity at the genetic level). MF5 is sensitive to eight clinically important antibiotics and does not possess cytolysin activator -A, gelatinase -E and hyaluronidase -lA virulence genes.

View Article and Find Full Text PDF

Using small molecules to integrate multifunctional surfaces within a nanopore is an effective way to endow smart responsibilities of nanofluidic diodes. However, the complex synthesis of the small molecules hinders their further application in achieving multifunctional surfaces. Here, a simple and versatile design concept is reported for fabricating bioinspired integrated nanofluidic diodes with adjustable surface chemistry by confining a spirocyclic fluorescein derivative, 6-aminofluorescein (6-AF), within an asymmetric track-etched nanopore.

View Article and Find Full Text PDF

The present opinion deals with the re-evaluation of pullulan (E 1204) when used as a food additive and with the new application on the extension of use to several food categories. Pullulan (E 1204) is obtained by fermentation of a food-grade hydrolysed starch with non-genetically modified ■■■■■. Based on the available information, the Panel considered that the manufacturing process of pullulan (E 1204) using this microorganism does not raise a safety concern.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are extensively distributed in plants and play crucial roles throughout all stages of plant growth. Nevertheless, the molecular mechanism through which BRs influence postharvest senescence in pakchoi remains elusive. Previous studies have demonstrated that the application of 1.

View Article and Find Full Text PDF

Obesity is linked to cardiovascular disease, cerebrovascular disease, diabetes, and dyslipidemia, lowering quality of life, work productivity, and healthcare expenditures. The aim of this present study is to investigate the mechanism of potato protein (PP) post-treatment in regulating lipogenesis and lipolysis in 3T3-L1 adipocytes. 9% PP hydrolysed for 2 h (PPH902) shows high yield and better activity; thus, PPH902 was used in all other experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!