Atherosclerosis, a chronic lipid-driven vascular inflammatory disease involving multiple cell types, is the primary cause of cardiovascular disease-related morbidity and mortality. Allograft inflammatory factor 1 (AIF-1) contributes to atherosclerosis development by affecting vascular smooth muscle cells (VSMCs). Increasing research indicates that VSMCs are pivotal in atherosclerosis progression, particularly in macrophage-like phenotypic switching, though the mechanism of AIF-1 VSMCs phenotypic switching is not well understood. This study aims to correlate AIF-1 expression with atherosclerosis development and VSMCs phenotypic switching. AIF-1 was expressed in the atherosclerotic plaques of patients with carotid artery narrowing and atherosclerosis mice. AIF-1 was expressed in ox-LDL treated VSMCs and promoted the apoptosis of VSMCs. AIF-1 significantly influenced macrophage-like VSMC numbers through the AIF-1/NF-κB pathway, enhancing lipid uptake and TNF-α and IL-6 secretion. This study showed increased AIF-1 expression in atherosclerotic plaques in both patients with carotid stenosis and an atherosclerosis animal model. AIF-1 facilitated VSMC dedifferentiation into macrophage-like cells, enhancing lipid uptake and inflammatory factor release through the AIF-1/NF-κB pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2025.114475DOI Listing

Publication Analysis

Top Keywords

phenotypic switching
12
allograft inflammatory
8
vascular smooth
8
smooth muscle
8
muscle cells
8
inflammatory factor
8
aif-1
8
atherosclerosis development
8
vsmcs phenotypic
8
aif-1 expression
8

Similar Publications

There is great interest in using genetically tractable organisms such as to gain insights into the regulation and function of sleep. However, sleep phenotyping in has largely relied on simple measures of locomotor inactivity. Here, we present FlyVISTA, a machine learning platform to perform deep phenotyping of sleep in flies.

View Article and Find Full Text PDF

NEK2 inhibition reverses vascular remodeling in pulmonary arterial hypertension associated with congenital heart disease.

Cell Signal

March 2025

Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Clinical Laboratory Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College; Beijing, China. Electronic address:

Objective: Pulmonary arterial hypertension (PAH) is a serious consequence of congenital heart disease (CHD). PAH is characterized by a cancer-like pro-proliferative and anti-apoptotic phenotype of pulmonary artery smooth muscle cells (PASMCs). Never in mitosis a-related kinase 2 (NEK2) has recently been identified as a key factor in tumor cell proliferation and migration whlie the functional importance of NEK2 in PAH associated with CHD (CHD-PAH) has not been elucidated yet.

View Article and Find Full Text PDF

Retinopathy of prematurity (ROP), a leading cause of blindness in premature infants, is characterized by retinal vaso-obliteration during hyperoxia and pathological neovascularization (NV) in relative hypoxia phase. Current treatments, which focus on the late stages of pathological neovascularization, are associated with numerous side effects. Studies demonstrated that discoidin domain receptor 2 (DDR2), a collagen-binding receptor tyrosine kinase, inhibits the experimental choroidal neovascularization and participates in tumor angiogenesis.

View Article and Find Full Text PDF

Adenosine undergoes ATP-dependent phosphorylation catalyzed by adenosine kinase (ADK). In plants, ADK also phosphorylates cytokinin ribosides, transport forms of the hormone. Here, we investigated the substrate preferences, oligomeric states and structures of ADKs from moss (Physcomitrella patens) and maize (Zea mays) alongside metabolomic and phenotypic analyses.

View Article and Find Full Text PDF

PTEN inactivating mutations are associated with hormone receptor loss during breast cancer recurrence.

Breast Cancer Res Treat

March 2025

Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, 06520, USA.

Purpose: Hormone receptor (HR) status may be unstable during breast cancer (BC) progression, and changes occur in approximately 20-30% of BC patients at the time of recurrence. The biologic tumor switch from HR+ to HR- status is associated with worse clinical outcomes and warrants alternative management. We aimed to characterize clinical and pathologic features of a subset of ER+/HER2- breast cancer patients who converted to triple negative phenotype upon recurrence, and investigate the molecular alterations associated with HR loss during BC progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!