Comprehensive multi-omics analyses exposes a precision therapy strategy that targets replication stress in hepatocellular carcinoma using WEE1 inhibition.

J Adv Res

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:

Published: February 2025

Introduction: Hepatocellular carcinoma (HCC) is an extremely heterogeneous malignancy with a poor prognosis, highlighting the need to target specific vulnerabilities within the tumor during treatment.

Objectives: This study employs multi-omics analysis techniques to provide novel insights into personalized therapeutic strategies for HCC patients.

Methods: We performed proteomic and transcriptomic sequencing on 178 and 94 clinical samples of primary HCC without prior treatment, respectively. We employed an unbiased Kinome CRISPR-Cas9 library screening approach to systematically evaluate and identify novel therapeutic strategies that specifically target replication stress (RS). The synergy between oxaliplatin and adavosertib was verified using in vitro and in vivo models, including hydrodynamic injection, patient-derived organoids, and patient-derived xenografts.

Results: In both proteomic- and transcriptomic-based subtyping analyses, subtypes characterized by hyperproliferative features demonstrated the poorest prognosis and the highest levels of RS. Among all first-line chemotherapeutic agents in these analyses, oxaliplatin accumulated the highest RS levels in HCC, while resistance remained a major challenge. With unbiased Kinome CRISPR loss-of-function gene screening, WEE1 was identified as a synthetic lethal target of oxaliplatin. The synergy between the WEE1 inhibitor adavosertib and oxaliplatin has been demonstrated in multiple in vitro and in vivo models. Mechanistically, adavosertib inhibits oxaliplatin-induced homologous recombination repair and G2/M checkpoint activation, leading to the accumulation of lethal DNA damage. Furthermore, patients with HCC showing high RS levels had poor prognoses and responded well to adavosertib and oxaliplatin combination treatments. This was validated by preclinical models and unsupervised clustering analysis.

Conclusions: Our findings provide promising insights into the precise therapeutic targeting of RS in HCC at both the proteomic and transcriptomic levels. Furthermore, our study highlights the potential of combining oxaliplatin with adavosertib as a treatment approach for HCC. In this study, we analyzed 178 and 94 pairs of clinical HCC samples using proteomic and transcriptomic sequencing, respectively. We discovered that the subtype characterized by high proliferation had the worst prognosis and highest RS level. Drug screening revealed that oxaliplatin promotes RS accumulation in HCC, but its resistance remains a challenge. Through unbiased CRISPR deletion-gene screening, WEE1 was identified as a lethal target of oxaliplatin. The WEE1 inhibitor adavosertib inhibits oxaliplatin-induced DNA repair, leading to lethal DNA damage accumulation. Furthermore, our clustering analysis based on RS levels demonstrated that HCC patients with high RS levels have poorer prognoses and be more beneficial from adavosertib and oxaliplatin combination therapy. These findings support an individualized treatment approach for HCC targeting RS based on WEE1 Inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jare.2025.02.016DOI Listing

Publication Analysis

Top Keywords

proteomic transcriptomic
12
adavosertib oxaliplatin
12
hcc
11
oxaliplatin
9
replication stress
8
hepatocellular carcinoma
8
wee1 inhibition
8
therapeutic strategies
8
transcriptomic sequencing
8
unbiased kinome
8

Similar Publications

Sucrose improve Lactiplantibacillus plantarum LIP-1's tolerance to heat by increasing biofilm production.

Int J Food Microbiol

March 2025

Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China. Electronic address:

Optimizing the carbon source to increase biofilm production and thus boost the heat tolerance of strains is a promising strategy. However, related research is scarce. This study investigated the effects of varying glucose and sucrose amounts added to MRS medium on biofilm production and heat tolerance by Lactiplantibacillus plantarum LIP-1.

View Article and Find Full Text PDF

The human genome project ushered in a genomic medicine era that was largely unimaginable three decades ago. Discoveries of druggable cancer drivers enabled biomarker-driven gene- and immune-targeted therapy and transformed cancer treatment. Minimizing treatment not expected to benefit, and toxicity-including financial and time-are important goals of modern oncology.

View Article and Find Full Text PDF

Aging and neurodegeneration: when systemic dysregulations affect brain macrophage heterogeneity.

J Immunol

March 2025

INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France.

Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration.

View Article and Find Full Text PDF

The Microbiome in Asthma Heterogeneity: The Role of Multi-Omic Investigations.

Immunol Rev

March 2025

Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Asthma is one of the most prevalent and extensively studied chronic respiratory conditions, yet the heterogeneity of asthma remains biologically puzzling. Established factors like exogenous exposures and treatment adherence contribute to variability in asthma risk and clinical outcomes. It is also clear that the endogenous factors of genetics and immune system response patterns play key roles in asthma.

View Article and Find Full Text PDF

Bacteriophages (phages) are emerging as a viable adjunct to antibiotics for the treatment of multidrug-resistant (MDR) bacterial infections. While intravenous phage therapy has proven successful in many cases, clinical outcomes remain uncertain due to a limited understanding of host response to phages. In this study, we conducted a comprehensive examination of the interaction between clinical-grade phages used to treat MDR Escherichia coli and Klebsiella pneumoniae infections, and human peripheral blood immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!