dECM and β-TCP incorporation effect on the highly porous injectable bio-glass bead for enhanced bone regeneration: In-vitro, in-vivo insights.

Int J Biol Macromol

Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea. Electronic address:

Published: February 2025

This study presents the development of an innovative injectable bioactive material, BG-ETa, for bone regeneration. Porcine-derived dermal extracellular matrix (dECM) was decellularized and combined with beta-tri calcium phosphate (β-TCP) and porous bio-glass (BG) beads, followed by freeze-drying to produce surface-modified BG beads. Incorporating sodium alginate (SA) enhanced injectability of the system, enabling effective delivery to defect sites. Bio-glass promotes osteogenic support and osteogenesis. dECM, rich in essential proteins and growth factors, mimics the bone microenvironment to improve cell adhesion, proliferation, and differentiation. The bioactive dECM/β-TCP coating on the bead surface offers neovascularization and early mineralization properties which ultimately facilitates new bone formation. In vitro assays demonstrated BG-ETa's biocompatibility, antimicrobial properties, and potential for osteogenic differentiation, with significant results in alkaline phosphatase (ALP) activity, alizarin red staining (ARS), immunocytochemistry (ICC), and gene expression through real-time PCR. In vivo implantation in rabbit femoral defects revealed promising degradation and significant bone regeneration after 4 and 8 weeks, as observed by histological analysis and micro-CT imaging. This injectable BG-ETa system holds promise as an effective alternative to traditional grafts, providing bioactive environment for enhanced bone regeneration with the potential to overcome limitations associated with autologous or allogeneic grafting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141040DOI Listing

Publication Analysis

Top Keywords

bone regeneration
16
enhanced bone
8
bone
6
decm β-tcp
4
β-tcp incorporation
4
incorporation highly
4
highly porous
4
porous injectable
4
injectable bio-glass
4
bio-glass bead
4

Similar Publications

The growth plate is crucial for skeletal growth in children, but research on repairing growth plate damage and restoring growth is limited. Here, a high-toughness adaptive dual-crosslinked hydrogel is designed to mimic the growth plate's structure, supporting regeneration and bone growth. Composed of aldehyde-modified bacterial cellulose (DBNC), methacrylated gelatin (GelMA) and sodium alginate (Alg), the hydrogel is engineered through ionic bonding and Schiff base reactions, creating a macroporous structure.

View Article and Find Full Text PDF

Injectable photosensitive bone cement enhancing angiogenesis and osteogenic differentiation for the treatment of bone nonunion.

APL Bioeng

March 2025

Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, People's Republic of China.

Nonunion fractures present a significant clinical challenge because of their complex microenvironment, which includes poor vascularization, insufficient osteogenesis, infection, and separation of fracture ends. The current clinical treatments have certain limitations. Inspired by this phenomenon, sandcastle worms secrete adhesive proteins that bind sand grains, shell fragments, and mineral particles, thereby constructing their "castles.

View Article and Find Full Text PDF

Introduction: Periodontitis is the most common non-communicable disease in humans. The main challenge in the treatment of periodontitis is to effectively control periodontal inflammation and promote tissue repair. Human umbilical cord mesenchymal stem cells-derived exosomes (hucMSCs-exo) have been reported to modulate inflammatory responses and promote tissue repairment mainly through miRNAs in several diseases.

View Article and Find Full Text PDF

Objective: To present a different location, lateral to the middle fossa, as a new surgical alternative for an active transcutaneous bone conduction implant (ATBCI) in children with microtia and external auditory canal atresia (EACA) who cannot undergo traditional surgery due to altered anatomy or desire for future aesthetic reconstruction.

Study Design: Prospective, longitudinal, descriptive study. The surgical technique was developed.

View Article and Find Full Text PDF

Repairing hard tissues, such as bones, remains a significant challenge, especially in adverse clinical conditions. Calcium hydroxyapatite (CaHA), a calcium phosphate (CaP), has structural and chemical characteristics similar to the mineral structure of human bones and teeth, offering bioactivity and biocompatibility properties. Photobiomodulation (PBM) uses light to reduce inflammation and accelerate tissue healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!