Sweetener aspartame aggravates atherosclerosis through insulin-triggered inflammation.

Cell Metab

Department of Microbiology, Tumor and Cell Biology, Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Karolinska Institute, 171 65 Stockholm, Sweden; Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China. Electronic address:

Published: February 2025

Consumption of artificial sweeteners (ASWs) in various foods and beverages has been linked to an increased risk of cardiovascular diseases (CVDs). However, molecular mechanisms underlying ASW-associated CVD remain unknown. Here, we show that consumption of 0.15% aspartame (APM) markedly increased insulin secretion in mice and monkeys. Bilateral subdiaphragmatic vagotomy (SDV) obliterated APM-elevated blood insulin levels, demonstrating crucial roles of parasympathetic activation in regulation of insulin secretion. Incessant APM feeding of ApoE mice aggravated atherosclerotic plaque formation and growth via an insulin-dependent mechanism. Implantation of an insulin-slow-release pump in ApoE mice exacerbated atherosclerosis. Whole-genome expression profiling discovered that CX3CL1 chemokine was the most upregulated gene in the insulin-stimulated arterial endothelial cells. Specific deletion of a CX3CL1 receptor, Cx3cr1 gene, in monocytes/macrophages completely abrogated the APM-exacerbated atherosclerosis. Our findings uncover a novel mechanism of APM-associated atherosclerosis and therapeutic targeting of the endothelial CX3CL1-macrophage CX3CR1 signaling axis provides an approach for treating atherosclerotic CVD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2025.01.006DOI Listing

Publication Analysis

Top Keywords

insulin secretion
8
apoe mice
8
sweetener aspartame
4
aspartame aggravates
4
atherosclerosis
4
aggravates atherosclerosis
4
atherosclerosis insulin-triggered
4
insulin-triggered inflammation
4
inflammation consumption
4
consumption artificial
4

Similar Publications

The association between hypertensive disorders of pregnancy (HDP) and the subsequent development of type 2 diabetes (T2D) in Japanese general population remains unclear. To investigate the influence of HDP on long-term postpartum development of metabolic disorders and T2D, we conducted a population-based cross-sectional study using the 75 g oral glucose tolerance test (75g-OGTT) in 978 parous Japanese women (median age: 66 years). We further evaluated the combined effect of HDP and T2D susceptibility genes on developing T2D.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) is characterized by insulin resistance and defective insulin secretion. Previously, we found that rats fed soft pellets (SPs) on a 3-hour restricted schedule over 14 weeks demonstrated glucose intolerance and insulin resistance with disruption of insulin signaling.

Objective: To determine (1) the time required for an SP diet to induce insulin resistance, and (2) whether the metabolic derangements in rats fed SPs can be reversed by changing to a standard control diet.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Introduction: In type 2 diabetes (T2D), beta cell failure is often associated with islet inflammation driven by the innate immune response, with macrophages playing a significant role. However, the composition and phenotype of lymphoid immune cells in the islets of individuals with T2D have not been extensively studied. This study aims to characterize and compare the presence, phenotype, and frequency of islet-associated lymphocytes-specifically T, B, and natural killer (NK) cells-in patients with T2D and non-diabetic organ donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!