The oxidative half-reaction of phenol hydroxylase has been studied by stopped-flow spectrophotometry. Three flavin-oxygen intermediates can be detected when the substrate is thiophenol, or m-NH2, m-OH, m-CH3, m-Cl, or p-OH phenol. Intermediate I, the flavin C(4a)-hydroperoxide, has an absorbance maximum at 380-390 nm and an extinction coefficient approximately 10,000 M-1 cm-1. Intermediate III, the flavin C(4a)-hydroxide, has an absorbance maximum at 365-375 nm and an extinction coefficient approximately 10,000 M-1 cm-1. Intermediate II has absorbance maxima of 350-390 nm and extinction coefficients of 10,000-16,000 M-1 cm-1 depending on the substrate. A Hammett plot of the logarithm of the rates of the oxygen transfer step, the conversion of intermediate I to intermediate II, gives a straight line with a slope -0.5. Fluoride ion is a product of the enzymatic reaction when 2,3,5,6-tetrafluorophenol is the substrate. These results are consistent with an electrophilic substitution mechanism for oxygen transfer. The conversions of I to II and II to III are acid-catalyzed. A kinetic isotope effect of 8 was measured for the conversion of II to III using deuterated resorcinol as substrate. The conversion of III to oxidized enzyme is base-catalyzed, suggesting that the reaction depends on the removal of the flavin N(5) proton. Product release occurs at the same time as the formation of intermediate III, or rapidly thereafter. The results are interpreted according to the ring-opened model of Entsch et al. (Entsch, B., Ballou, D. P., and Massey, V. (1976) J. Biol. Chem. 251, 2550-2563).

Download full-text PDF

Source

Publication Analysis

Top Keywords

m-1 cm-1
12
oxidative half-reaction
8
half-reaction phenol
8
phenol hydroxylase
8
absorbance maximum
8
extinction coefficient
8
coefficient 10000
8
10000 m-1
8
cm-1 intermediate
8
intermediate iii
8

Similar Publications

From X- To J-Aggregation: Subtly Managing Intermolecular Interactions for Superior Phototheranostics with Precise 1064 nm Excitation.

Adv Healthc Mater

January 2025

College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China.

The stacking mode in aggregate state results from a delicate balance of supramolecular interactions, which closely affects the optoelectronic properties of organic π-conjugated systems. Then, managing these interactions is crucial for advancing phototheranostics, yet remains challenging. A subtle strategy involving peripheral phenyl groups is debuted herein to transform X-aggregated SQ-H into J-aggregated SQ-Ph, reorienting intermolecular dipole interactions while rationally modulating π-π interactions.

View Article and Find Full Text PDF

Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have drawn great attention as promising candidates for realizing next-generation printed thermoelectrics (TEs). However, the dispersion instability and resulting poor printability of CNTs have been major issues for their practical processing and device applications. In this work, we investigated the TE characteristics of water-processable carboxymethyl cellulose (CMC) and single-walled CNT (SWCNT) composite.

View Article and Find Full Text PDF

Synthesis and Chiroptical Activity of π-Expanded Electron-rich Heterohelicenes Based on the 1,4-Dihydropyrrolo[3,2-b]pyrrole core.

Chemistry

January 2025

Institute of Organic Chemistry PAS: Instytut Chemii Organicznej Polskiej Akademii Nauk, Institute of Organic Chemistry, Kasprzaka 44/52, 01-224, Warsaw, POLAND.

Herein, we report the synthesis and chiroptical characteristics of the first (double) helicenes possesing the 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP) moiety as their central core. We have developed a three-step synthesis with 6π-electrocyclization accompanied with HBr elimination as its key step. We found that, whereas for smaller periphereal arms double 6π-electrocyclization occurs smoothly forming a double helicene, in the case of longer policyclic aromatic hydrocarbons the reaction becomes less efficient and mono-helicenes are the only products.

View Article and Find Full Text PDF

The ability to label synthetic oligonucleotides with fluorescent probes has greatly expanded their nanotechnological applications. To continue this expansion, it is essential to develop approachable, modular, and tunable fluorescent platforms. In this study, we present the synthesis and incorporation of an amino-formyl-thieno[3,2-]thiophene (AFTh) handle at the 5'-position of DNA oligonucleotides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!