Thermoelectric coolers (TECs) are pivotal in modern heat management but face limitations in efficiency and manufacturing scalability. We address these challenges by using an extrusion-based 3D printing technique to fabricate high-performance thermoelectric materials. Our ink formulations ensure the integrity of the 3D-printed structure and effective particle bonding during sintering, achieving record-high figure of merit () values of 1.42 for p-type bismuth antimony telluride [(Bi,Sb)Te] and 1.3 for n-type silver selenide (AgSe) materials at room temperature. The resulting TEC demonstrates a cooling temperature gradient of 50°C in air. Moreover, this scalable and cost-effective method circumvents energy-intensive and time-consuming steps, such as ingot preparation and subsequently machining processes, offering a transformative solution for thermoelectric device production and heralding a new era of efficient and sustainable thermoelectric technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.ads0426DOI Listing

Publication Analysis

Top Keywords

thermoelectric
5
interfacial bonding
4
bonding enhances
4
enhances thermoelectric
4
thermoelectric cooling
4
cooling 3d-printed
4
3d-printed materials
4
materials thermoelectric
4
thermoelectric coolers
4
coolers tecs
4

Similar Publications

Strong interaction between plasmon and topological surface state in BiSe/CuS nanowires for solar-driven photothermal applications.

Sci Adv

March 2025

Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

Developing high-performance photothermal materials and unraveling the underlying mechanism are essential for photothermal applications. Here, photothermal performance improved by strong interaction between plasmon and topological surface state (TSS) is demonstrated in BiSe/CuS nanowires. This hybrid, which CuS nanosheets were grown on BiSe nanowires, leverages the plasmon resonance and TSS-induced optical property, generating wide and efficient light absorption.

View Article and Find Full Text PDF

Tetrahedrite Nanocomposites for High Performance Thermoelectrics.

Nanomaterials (Basel)

February 2025

Centro de Ciências e Tecnologias Nucleares (C2TN), Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, 2695-066 Bobadela, Portugal.

Thermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices remains a challenge. To change this paradigm, the preparation of highly efficient tetrahedrite nanocomposites is proposed.

View Article and Find Full Text PDF

Doping Efficiency of Poly(benzodifurandione) from First Principles.

J Phys Chem C Nanomater Interfaces

March 2025

Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain.

Poly(benzodifurandione) (PBFDO) has emerged as a promising n-type conductive polymer (n-CP) for organic electronic applications, particularly in thermoelectrics (TE), due to its high doping efficiency and environmental stability. Unlike most high-performance p-type polymers, high-efficiency n-CPs are limited, posing a bottleneck in the TE module performance. In this study, we use first-principles electronic structure calculations to investigate the thermodynamic conditions that favor n-doping in PBFDO, focusing on the role of the temperature, chain length, and doping concentration.

View Article and Find Full Text PDF

Nanoarchitectonics of High-Performance and Flexible n-Type Organic-Inorganic Composite Thermoelectric Fibers for Wearable Electronics.

ACS Nano

March 2025

Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.

Since most conductive polymers are -type, developing high-performance -type organic-inorganic composite thermoelectric (TE) fibers is a great challenge. Herein, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-coated AgTe nanowires (PC-AgTe NWs) were prepared by a liquid-phase reaction using PEDOT:PSS-coated Te nanowires (PC-Te NWs) as templates, and the PEDOT:PSS/PC-AgTe NWs composite fibers were then prepared by wet spinning. As the content of PC-AgTe NWs increases, the composite fiber changes from -type to -type.

View Article and Find Full Text PDF

Efficient Photothermoelectric Conversion of CSS@BP/BiTe Array for Innovative Aircraft Attitude Recognition.

Adv Sci (Weinh)

March 2025

MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions & Shaanxi Provincial Key Laboratory of Condensed Matter Structure and Properties, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The realization of fast, simple and efficient flight attitude recognition is crucial for flight safety and control stability, but still faces challenges in new materials and technologies. Herein, a chloroplast-like selenium-doped copper sulfide@black phosphorus (CSS@BP) composite material is prepared by ultrasonic chemical synthesis using BP nanosheets to effectively absorb light energy and disperse CSS layers to promote rapid photothermal conversion, which shows the temperature change more than ≈40 °C and an excellent photothermal conversion efficiency of 68.9% at 405 nm, corresponding to the theoretical calculation results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!