Protocol for AI-based segmentation and quantification of interstitial cells of Cajal in murine gastric muscle.

STAR Protoc

Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA. Electronic address:

Published: February 2025

Interstitial cells of Cajal (ICCs), pacemaker and neuromodulator cells in the gastrointestinal (GI) tract, play an important role in GI motility. However, quantifying ICCs is challenging due to their mixed morphologies. Here, we present a protocol for preparing and immunostaining ICC in the murine gastric tunica muscularis using artificial intelligence (AI). We describe steps for obtaining muscles, whole-mount staining, and imaging ICC using confocal microscope. We then detail procedures for training an AI to identify ICCs and quantify their volume. For complete details on the use and execution of this protocol, please refer to Taheri et al..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880582PMC
http://dx.doi.org/10.1016/j.xpro.2025.103644DOI Listing

Publication Analysis

Top Keywords

interstitial cells
8
cells cajal
8
murine gastric
8
protocol ai-based
4
ai-based segmentation
4
segmentation quantification
4
quantification interstitial
4
cajal murine
4
gastric muscle
4
muscle interstitial
4

Similar Publications

Interstitial lung disease (ILD) consists of a group of immune-mediated disorders that can cause inflammation and progressive fibrosis of the lungs, representing an area of unmet medical need given the lack of disease-modifying therapies and toxicities associated with current treatment options. Tissue-specific splice variants (SVs) of human aminoacyl-tRNA synthetases (aaRSs) are catalytic nulls thought to confer regulatory functions. One example from human histidyl-tRNA synthetase (HARS), termed HARS because the splicing event resulted in a protein encompassing the WHEP-TRS domain of HARS (a structurally conserved domain found in multiple aaRSs), is enriched in human lung and up-regulated by inflammatory cytokines in lung and immune cells.

View Article and Find Full Text PDF

Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males.

View Article and Find Full Text PDF

A disposable, self-powered enzymatic biofuel cell (BFC) sensor integrated with a hollow microneedle array (HMNA) for glucose monitoring in interstitial fluid (ISF) is reported. The HMNA enables painless and minimally invasive ISF extraction. The BFC uses dehydrogenase (GDH) in conjunction with NAD, diaphorase (DI), and vitamin K (VK) serving as electron transfer mediators as the anode catalyst and Prussian blue (PB) as the electrochromic cathode.

View Article and Find Full Text PDF

Tubulointerstitial hypoxia is a key factor for lupus nephritis progression to end-stage renal disease. Numerous aquaporins (AQPs) are expressed by renal tubules and are essential for their proper functioning. The aim of this study is to characterize the tubular expression of AQP1, AQP2 and AQP3, which could provide a better understanding of tubulointerstitial stress during lupus nephritis.

View Article and Find Full Text PDF

Cancer is a serious disease in human beings, and its high lethality is mainly due to the invasion and metastasis of cancer cells. Clinically, the accumulation and high orientation of collagen fibrils were observed in cancerous tissue, which occurred not only at the location of invasion but also at 10-20 cm from the tumor. Studies indicated that the invasion of cancer cells could be guided by the oriented collagen fibrils, even in a dense matrix characterized by difficulty degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!