RMX1002 (grapiprant) is a selective E-type prostanoid receptor 4 (EP4) antagonist and a promising candidate for cancer therapy, potentially enhancing anti-tumor immune responses. This study aimed to evaluate the safety, pharmacokinetics, pharmacodynamics, and efficacy of RMX1002 as monotherapy and in combination with anti-PD-1 antibody toripalimab for advanced solid tumors. This multicenter, phase I trial enrolled patients with histologically or cytologically confirmed advanced solid tumors. This study included three phases: Ia (dose-escalation of RMX1002 monotherapy from 200 to 650 mg BID), Ib (dose-escalation from 500 to 650 mg BID in combination with toripalimab), and Ic (dose-expansion of 500 mg BID with toripalimab). Safety, pharmacokinetics, pharmacodynamics, and efficacy were assessed. A total of 45 patients were enrolled (17 in phase Ia, 12 in phase Ib, and 16 in phase Ic). No dose-limiting toxicity was reported, and the MTD was not reached. Overall, 21 patients experienced RMX1002-related adverse events with CTCAE grade ≥ 3. Pharmacokinetics revealed rapid absorption of RMX1002 with the maximum concentration (C) reached within 2 to 5 h, and dose-dependent increases in C and area under the concentration-time curve. The increase in urinary metabolite of PGE2 suggested the inhibition of EP4 signaling pathway. The best response was stable disease, reported in 64.7%, 28.6%, and 18.8% of patients in phase Ia, Ib, and Ic, respectively. RMX1002 was well tolerated and showed a best response of stable disease. RMX1002 500 mg BID with toripalimab 240 mg every 3 weeks is the recommended dose for future trials.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10637-025-01512-zDOI Listing

Publication Analysis

Top Keywords

advanced solid
12
solid tumors
12
selective e-type
8
e-type prostanoid
8
prostanoid receptor
8
monotherapy combination
8
combination anti-pd-1
8
anti-pd-1 antibody
8
safety pharmacokinetics
8
pharmacokinetics pharmacodynamics
8

Similar Publications

The discovery of novel, selective inhibitors targeting CDK2 and PIM1 kinases, which regulate cell survival, proliferation, and treatment resistance, is crucial for advancing cancer therapy. This study reports the design, synthesis, and biological evaluation of three novel pyrazolo[3,4-]pyridine derivatives (), confirmed spectral analyses. These compounds were assessed for anti-cancer activity against breast, colon, liver, and cervical cancers using the MTT assay.

View Article and Find Full Text PDF

Metal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) due to their tunable bandgaps, which allow the active layers to be optimized for artificial light sources. However, significant non-radiative carrier recombination under low-light conditions has limited the full potential of perovskite-based IPVs. To address this challenge, an integration of perylene diimide (PDI)-based sulfobetaines as cathode interlayers (CILs) is proposed and the impact of varying alkyl chain length (from 1,2-ethylene to 1,5-pentylene) between the cationic and the anionic moieties is examined.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) have garnered significant attention from both academic and industrial communities due to their high safety feature and high energy density in combination with lithium(Li) metal anode. Nevertheless, their practical applications remain constrained by the relatively low room-temperature ionic conductivity and interface issues. Anion-derived cation-anion aggregates (AGGs), derived from high-concentration liquid electrolytes, promote a stable solid-electrolyte interphase layer, which have gradually propelled their application in SPEs.

View Article and Find Full Text PDF

Overcoming the challenges of integrating disparate components in nanoarchitectures, this study introduces a straightforward strategy based on a mixed-valence coordination approach, creating an ordered ternary heterostructure integrated with ultrasmall homojunction. This singular ordered homojunction-heterostructure unites ultrathin 1D rutile TiO nanowires (NWs) and ultrathin anatase TiO NWs with 0D Prussian Blue Analogs (PBAs) nanoparticles (NPs), all exhibiting crystallographic oriented alignment with each other, forming a ternary mesocrystals. Experimental and theoretical insights disclose that the complex interplay between these dissimilar components is governed by a spontaneous lattice match effect, which not only optimizes but also directs the charge transfer, thereby enhancing both efficiency and stability.

View Article and Find Full Text PDF

Titanium niobium oxides (TNOs) are attractive anode materials for high power density Li-ion batteries. However, the details of capacity storage in TNOs are not fully understood today as it depends on the Ti and Nb composition and their changes in the oxidation state. This is further complicated by a wide variation in gravimetric capacities reported in the literature for TNO anodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!